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ABSTRACT 
Many scientific and engineering applications generate data 
that are well-suited to be studied using time series charts. 
Two types of time series that define input, output, and state 
dynamics of DEVS models are piecewise constant and event 
charts. In this paper, time series capable of displaying both 
linear and superdense time segments and trajectories are 
conceptualized and formulated. These lend themselves for 
visualizing behavior of parallel atomic and coupled DEVS 
models. The concept of superdense time segments is realized 
as plug-ins as part of the Eclipse BIRT (Business Intelligence 
and Reporting Tool) framework. They can receive time-
based alphanumerical data sets from external static and 
dynamic sources, including the DEVS-Suite simulator. As 
standalone plug-ins, time series can be used to create static 
plots and used in BIRT reports. These plug-ins are also 
integrated into the DEVS-Suite simulator where each model 
component’s behavior can be customized and dynamically 
plotted. Time series charts simplify and complement tabular 
logging of data sets for developing simulation models that 
exhibit zero-time transitory state transitions. 
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INTRODUCTION 
In many component-based modeling approaches, dynamics 
of the simulated components and their interactions are 
defined in terms of time. Computations and communications 
between any two components must occur either sequentially 
or concurrently with respect to a clock. The measure of time 
between any two consecutive time instances can have 
unbounded accuracy (as in continuous time) or bounded 
accuracy (as in discrete-time). The notion of linear time is 
concisely defined as an algebraic structure 〈ܶ, ≺〉 where ܶ is 
a set and ≺ is an ordering relation on the elements of ܶ. 
Given ܶ and a set of arbitrary values ܸ with the constraints 
that for any ݐ ∈ ܶ there exists only one value ݒ ∈ ܸ, 
trajectory charts with linear time can be easily plotted. For 
modeling approaches that can support multiple, contiguous 
instantaneous state changes the concept of linear time needs 
to be augmented with superdense time where two 
simultaneous time instances are defined to be contiguous 
with time instances	ݐሾ݊ଵሿ	and	ݐሾ݊ଶሿ.   
A discrete-time and discrete-event models can be defined in 
terms of input and output sequences. In these system-
theoretic modeling formalisms [10,18,19], time is 
mathematically defined to be either discrete or continuous. 
These models may allow multiple inputs (or outputs) to 
occur at an instance of time due to a model being in one or 
multiple states for a zero time duration (e.g., parallel DEVS 
[2]). The functions responsible for processing these inputs, 
changing states, and producing outputs can be 
mathematically specified in terms of superdense time [11]. 
However, to visually render trajectory charts for a finite 
number of contiguous state changes at an instance of time 
(i.e., instantaneous state transitions) and thus multiple inputs 
and outputs occurring an instance of time, visual 
representations accommodating superdense time need to be 
conceptualized, formulated, and implemented. They are 
particularly important for understanding transient state 
transitions (state changes in zero time period). State (with 
input/output trajectories) are very useful for understanding 
time-based dynamics of simulation models and especially 
identifying subtle timing issues which may be due to design 
flaws and/or implementation errors. 
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A modeling formalism that supports sequential and parallel 
model execution and communication is known as Discrete 
Event System Specification (DEVS) [2]. The theory of 
DEVS modeling is well-suited for conceptualizing 
superdense time. Trajectory charts with superdense time can 
be systematically defined and developed for tools such as 
DEVS-Suite simulator [5,8].  

The DEVS formalism, grounded in system-theory [18], is 
based on a strong notion of I/O modularity where data 
belonging to any model component can only be shared with 
another model component via their coupled input and output 
ports. Complex, large-scale coupled models can be 
composed via tree-structure composition of atomic and 
coupled models subject to satisfying the closure under 
coupling principle. Inner dynamics of any atomic model 
(defined in terms of time and state) can be observed via I/O 
variables. Operations in all atomic and coupled model 
components can be defined (directly or indirectly) in terms 
of a logical time base. As complexity and scale of atomic and 
coupled model increases, it is useful to conveniently choose 
and observe their dynamics of interests in alternative, and 
complementary textual, tabular, and visual forms. Plotting 
trajectory charts for models that undergo contiguous, 
instantaneous state transitions is desirable although non-
trivial to conceptualize and formulate given the restrictions 
imposed for creating input, output, and state trajectories in 
finite spatial spaces. 

Every model can have input and output variables with 
corresponding input and output ports. The data variable types 
for inputs, outputs, and states can be simple (e.g., int and 
enum primitive data types) or complex (e.g., Integer and 
Pair class types). Variables such as Pair have complex 
structure (e.g., (key,value), key=(phase,sigma), 
value=String) from the standpoint of displaying them 
visually. Consequently, crude simplifications are often 
employed to display such complex data types. To visually 
view these data trajectories requires defining representations 
that can capture simultaneity for input, outputs, and states.  

The time base used for visual data trajectories can be 
restricted to be linear even though the model can undergo 
internal or external transition in zero logical time. Limiting 
the time base of visual data trajectories to be strictly linear 
prevents visualizing transient state changes and generation 
of simultaneous events. The dynamics of a model 
instantaneously responding to input events or generate 
output events cannot be visually created and thus 
inaccessible (visualized) while the model being executed. 

Another useful capability for visualizing the dynamics of any 
atomic model is to display variables belonging to a 
component in a “synchronized” fashion. Although an 
arbitrary model’s behavior is asynchronous (i.e., inputs, 
outputs, and states may occur at distinct time steps during a 
simulation cycle), it is useful for the time axes of all selected 
data trajectories to be aligned. Such a visualization allows 
precise visual observation (evaluation) of the behavior of any 
atomic model including its I/O and state changes in response 

to internal, external, and confluent transition functions. 
Observation of the I/O and state variables can be extended to 
include the atomic simulator’s state variables such as time of 
last event and time to next event. Alignment of the model’s 
and simulator’s visual data trajectories offers the modeler the 
ability to examine and understand simple and complex 
relationships that exist among external, internal, output, and 
time advance functions.  

In the DEVS modeling formalism, two key concepts for the 
atomic model are allowing time to the next event to be 
defined as infinity or zero for the external or internal 
transition functions. The former allows future input events to 
arrive at arbitrary time instances. This requires visualizing 
time to next event data trajectories having the infinity value. 
With the latter, transitory state transitions can be allowed. 
The consequence is that (input, output, and state) trajectory 
charts for all legitimate DEVS models needs to be supported 
– i.e., dynamics of any atomic model that has a finite number 
of state transitions with zero time durations – can be plotted. 
Supporting visualization of superdense time results in 
creating trajectory charts for atomic and coupled models that 
can receive multiple inputs or outputs at the same time 
instance. 
TRJACTORIES WITH LINEAR AND SUPERDENSE TIME 
BASES 

States, inputs, and outputs of any dynamical model can be 
defined in terms of linear [19] and superdense time [11]. 
Time can be represented by a variable ࢚. We can specify 
every time-dependent input, state, or output of a model 
represented in terms of a variable ࢜ and variable ࢚. 
Definition 1. ݐሾ∁ሿ ൌ ݐ ൈ ሾ∁ሿ, ݐ ∈ 	Թ,ஶ,

ା 	∁	∈ Գ	\∞ represents 
a collection of time instances that are monotonically ordered 
with respect to time ݐ. Time is a linear variable – i.e., given 
time duration ݐߜ ≐ ାఓݐ െ ݐ ൌ ߦ and shifted by ߤ ∈ 	Թା, 
then  ݐߜ ≐ ାఓݐ െ ݐ ൌ ,ߤ ݆ ൌ ݅   The reference value .ߦ	
for ݐ is defined to be zero; it can be shifted by any positive 
or negative finite value. For any time instances ݐ and ݐ	that 
are equal (i.e., ݐ െ ݐ ൌ 0), they are distinguished using the 
index term ∁  – e.g., given ݐሾሿ, ,ሾଵሿݐ  ሾଵሿݐ ሾଶሿ, time instantݐ
occurs after ݐሾሿ and before ݐሾଶሿ denoted as ݐሾሿ ≼ 	 ሾଵሿݐ ≼
 ሾଶሿ. The operator ≼ defines weak simultaneity of timeݐ	
which means two consecutive time instances ݐሾሿ and ݐሾାଵሿ 
are unequal. The index term ݊ is required if at least there are 
two equal time instances. For totally ordered time instances 
belonging to ݐ, they degenerate to ⋯ , ,ݐ ,ݐ  ,Therefore	,⋯.ݐ

the time base can be ⋯ , ,ݐ ݐ
ሾሿݐ

ሾଵሿ,⋯ , ݐ
ሾሿ, ݉	ℓ,⋯whereݐ ൏

∞. Totally and partially ordered time instances are illustrated 
in Figure 1. 

Definition 2. ݃ ൌ 	 ሾ∁ሿݐ →  is an onto, but not a one-to-one ݒ
function. 	ݒ	 ≐ 	 ሼܽ,⋯ , ሽݖ ∪ ሼܣ,⋯ , ܼሽ ∪ Ժ ∪ Թ	 ∪ േ∞ can 
represent alphanumeric values for state, input, and output 
variables. Every alphanumeric value has a finite length. 
Values at any time instance for input, output, and state 
trajectories are determined using ݃	൫ݐሾ∁ሿ൯ ൌ  Variables .ݒ



 

with numeric values are linear. Alphanumeric values have an 
arbitrary sequence. The negative and positive infinity values 
are the smallest and largest values. When a variable with 
alphanumeric values is assigned infinity, the values form a 
linear relationship with respect to the negative and positive 
infinity values as being the only smallest and the only largest 
values. A piecewise constant trajectory with a time that has 
both linear and superdense time is illustrated in Figure 2. 

A trajectory is defined to be a concatenation of one or more 
segments. Two distinct time instance values are required to 
define the duration of a segment. The duration of a segment 
can be defined to range from zero to infinity inclusively. A 
segment can have a duration of zero, in which case its start 

and end time instances are partially ordered ݐ
ሾሿ ≼

ݐ	
ሾାଵሿ	(see Definitions 1 and 2). A segment with infinity 

duration is linearly ordered – i.e., ݐ 	൏ 	 	ݐ  or	ݐ
ሾሿ ൏ 	  ݐ

where	ݐ ് ∞, 	ݐ
ሾሿ ് ∞, ݐ ൌ ∞ and ݍ  0. A segment with 

infinity duration is a mathematical artifact which cannot be 
exactly displayed. 

 
Figure 1: (a) Time segment satisfying the ൏ linear time 
ordering relationship, (b) contiguous time segments each 
having zero time duration, (c) contiguous time segments 
transformed to superdense time. 

A segment can be piecewise constant (i.e., variable ݒ has a 
constant value for the duration of the segment). We also have 
event segments where there exists a single between ݐ and ݐ 

,	ݐ) ݐ	|	ݐ 	൏ 	 ݐ ) orݐ
ሾℓሿ  and ݐ

ሾℓାଵሿ (see Definitions 1 and 
2). Values for a segment can be arbitrary (i.e., values for 
segments that have durations greater than zero and less than 
infinity can be defined using any function or relation). A 
trajectory can be created by concatenating segments using 
ሾ, ሻ rule. Therefore, trajectory ߱ ∘ 	߱ଵ for consecutive 
piecewise constant ߱  ൌ ߱  andݒ ଵ ൌ  ଵ segments shown inݒ
Figure 2, ߱ has value ݒfrom ݐuntil ݐଵand ߱ଵhas value ݒଵ 
from ݐଵuntil ݐଶ. Event trajectories follow the same 

concatenation rule. Specifically, every event segment in an 
event trajectory has its values at the start of the segment with 
no values defined for the rest of its time duration (e.g., ߱ 
has value ݒ at ݐwith no values until ݐଵ). 

DEVS I/O AND STATE TRAJECTORIES  
The inputs and outputs ܺ , ܻ of any DEVS atomic model ܯ ൌ
〈ܺ, ܵ, ܻ, ,௫௧ߜ ,௧ߜ ,ߜ ,ߣ ܰ and coupled model 〈ܽݐ ൌ
〈ܺ, ܻ, ,ܦ ሼܯௗሽ, ,ܥܫ ,ܥܫܧ  are strictly defined as event 〈ܥܱܧ
segments and trajectories. The state of any atomic model are 
also strictly defined as piecewise constant segments and 
trajectories. Event segments and trajectories may be 
transformed to piecewise, continuous, or other forms using 
appropriate mapping functions.  

The values for trajectories can range from negative to 
positive infinity. Therefore, it is necessary for charts to 
support visualizing the full range of values a variable may 
have. An example of a variable that can have positive infinity 
value is time to next event in DEVS atomic model. Clearly, 
there may also exist some variable with negative infinity 
value. Therefore, input, output, and state piecewise constant 
and event trajectories with infinity values are important to be 
visually rendered. 

 
Figure 2: Piecewise constant data trajectory with 
superdense time base. 

Input trajectories  
An input is defined as either endogenous or exogenous. 
Inputs received from other atomic models are endogenous. 
Time-based input variables are defined as ݃ ൌ 	 ሾ∁ሿݐ →  .ݒ
Every input value corresponds to a unique time instance (see 
Definition 1). Input trajectories generated by sources other 
than atomic or coupled model (communicated via 
,ܥܫ ,ܥܫܧ  couplings) are exogenous. An example of an ܥܱܧ
exogenous input trajectory is a data file having all its entries 
satisfying Definitions 1 and 2. These input trajectories can 
become endogenous via “autonomous” atomic models that 
read such data files and generate output events which in turn 
become input events. 

Output trajectories 
All outputs are endogenous and are generated by atomic 
models or other non-simulatable components [15] that 
belong to atomic models. Strictly speaking, coupled models 
cannot generate outputs on their own due to the closure under 
coupling principle. 

State trajectories 
Any state trajectory can become an output trajectory. The 
state ܵ of any atomic models is defined as a set of variables. 



 

States of a model can be specified as ݁ݏ݄ܽ ൈ ߪ ൈ ଵݒ ൈ ⋯ൈ
ߪ	|	ݒ ∈ Ը

ାஶ. The values for ߪ are computed using ܽݐሺݏሻ. 
Together ݁ݏ݄ܽ and ߪ define the minimum state set for a 
model. They are referred to as the primary states. Phase must 
have at least two values in order to define state-based 
behavior (i.e., a model must at least be in two distinct states) 
[18]. Other variables (i.e., ݒଵ ൈ ⋯ൈ  ) are called secondary	ݒ
states. There are no restrictions on what secondary variables 
may represent, except any variable that is related to time 
must be consistent with ߪ as defined in time advance 
function ܽݐሺݏሻ. The state variables are commonly analyzed 
for run-time simulation verification and model validation. 

Every simulation scenario for an atomic model with a finite 
number of state transitions must have the same number of 
segments as there are state transitions. The simulation 
scenario for an input trajectory can have at most the same 
number of input segments as there are state transitions. The 
same holds for output trajectory. A state transition can be 
transitory or non-transitory. Zero logical-time refers to a 
simulation cycle (due to either an internal or external 
transition function) with ܽݐሺݏሻ ൌ 0. Such segments are 
called zero-time segments and conform to Definition 2. In 
the context of a logical-time atomic DEVS model, a zero 
logical-time segment corresponds to a transitory state 
ሻݏሺܽݐ) ൌ 0). For any legitimate DEVS model, there may 
only be a finite number of consecutive zero logical-time 
segments in any trajectory. Furthermore, only a finite 
number of non-transient and transient state transitions may 
exist for a simulation scenario having a finite duration. It is 
also assumed there is no ordering among simultaneous input 
and output events that occur at the same time. The order of 
contiguous transient states, however, is determined in the 
external transition function which can be deterministic or 
not. There is ordering among simultaneous output events. 

Given simulation cycle periods specified by ܽݐሺݏሻ in a 
model's external or internal transition function, a simulation 
scenario can be categorized to have either non-transient state 
transitions: Every simulation cycle has a duration greater 
than zero and less than infinity or mixed non-transient and 
transient state transitions: Every simulation cycle can have 
zero, finite, or infinite duration. 

Restrictions 
To plot trajectories for input, output, or state variables, they 
must be a primitive type. The variables that can be plotted 
over a time period can be numbers and strings. Numbers can 
be integer, real, or others (e.g., bytes). Variable type String 
can also be plotted. In principle, symbols (e.g., ⋄ and ⨀) can 
be used instead of numbers or strings. If a variable has a 
complex type, it must be decomposed to its primitive parts 
(numbers and strings) in order to be plotted. If complex data 
types can be mapped to symbols, they can be displayed too. 

DEVS-Suite simulator variables 
It is sometimes useful to plot time of last event ݐ and time 
to next event ݐே. These variables belong to the simulation 
protocol used in the DEVS-Suite simulator. These variables 
specify time duration for the input, output, and state 
segments. For an atomic model, ݐேis the time for the internal 
transition firing and can also be the time instance at which 
outputs are computed and sent out. For a coupled model, ݐேis 
the shortest time duration from ݐ for one or more atomic 
models which have either an internal transition, an input 
scheduled to arrive, or both. Time instances belonging to ݐே 
and ݐ can have linear or superdense relationships. 

MIXED LINEAR AND SUPERDENSE TIME 
TRAJECTORIES 
The time axis and spatial axis are distinct. The numerical 
time axis has to be mapped to string values, each of which is 
spatially displayed using pixels. One approach to display 
both linear and superdense time is shown in Figure 3. In this 
setting, time axis is composed of linear and superdense time 
segments where time instances are labeled as defined above.  

Mapping numeric time and value axes to their spatial 
counterparts  
The duration for linear time segments are defined to be 
greater than zero and less than infinity. Time labels for these 
segments are unique for any single trajectory. These 
numerical numbers map one-to-one to pixels. In contrast, the 
duration for every superdense time segment is zero. 
Therefore, their time labels are indexed as defined above. A 
segment with zero time duration (measured in terms of the 
model and simulation time) is defined to have a finite spatial 
length which can be in pixels. For example, given the 
segment between ݐଵሾ0ሿ and ݐଵሾ1ሿ with ∆ݐ ൌ 0 (i.e., ݐଵሾ0ሿ ≼
ݔ∆ ଷ withݔ ଶ andݔ ଵሾ1ሿ) is mapped toݐ ൌ ߯, which must be a 
finite number of pixels (see Figure 3). The ݔଶ	and	ݔଷ	spatial 
values	are strictly ordered (i.e., ݔଶ ≺  ଷ) even though theirݔ
corresponding time values are weakly simultaneous. The 
spatial length for all superdense time segments for all input, 
output, and state variables is assumed to be the same. 

Composing linear and superdense time segments as just 
described has few shortcomings. Adding or removing 
superdense time segments causes charts to expand or shrink. 
This is undesirable when the charts are being plotted 
dynamically. An alternative approach is shown in Figure 4. 
In this setting, the linear and superdense time axes are 
separated. This is important as it simplifies visualization of 
the charts even though more display space is required. 
Another benefit of this approach is that charts can scale. 
When there are several series of superdense time segments, 
they are separated and therefore simpler to view and 
evaluate.      



 

 
Figure 3. Combined linear and superdense time segments with their spatial counterparts. 

 
Figure 4. Stacked linear and superdense time segments. 

 

Considering the positive and negative values, they too must 
be mapped to spatial representations. Since infinity needs to 
be plotted relative to a finite value set, it must be mapped to 
a number larger than the largest number in the set. If the 
value set is known a-priori, it is relatively simple to assign a 
finite value to infinity, which can be visually rendered well 
relative to the numbers (or strings) in the set. However, in a 
dynamic setting, the largest number cannot be known. 
Therefore, the (positive or negative) infinity value can be 
defined to be a percentage larger than the largest (positive or 
negative) value in the value set. If the range of values is very 
large (e.g., 1ି to 1ାଵଽ and 1 to 1ାଷ), then the numerical 
infinity band (defined as the difference between the largest 

number in the set and the assigned value to infinity) can 
change dramatically. The data value set including the 
assigned finite value to infinity can be mapped to spatial axis 
rendered linearly in pixels. 

CREATING MIXED LINEAR AND SUPERDENSE CHARTS 
Several professional grade plotting tools exist for creating a 
different kinds of charts including line charts. Among them 
are the Business Intelligent and Reporting Tool [1,17], 
JFreeChart [6], and d3.js [3]. The Business Intelligence and 
Reporting Tool (BIRT) offers a flexible framework for 
extending or creating new kinds of charts. It supports 
reporting and business intelligence capabilities for rich client 
and web applications, especially those based on Java and 
J2EE. Main components for BIRT are its design, report, 
chart, and script engines. BIRT has report designer for 
creating BIRT reports within the Eclipse IDE [4] , Chart 
Builder, and Report Viewer. These can be deployed in any 
Java application. BIRT supports different kinds of charts 
such as Bar, Pie, Line, Scatter, and Gantt charts among 
others. One of its major capabilities is its flexible, rich chart 
customization wizard. As BIRT is built using the Eclipse 
plugin framework, one can extend the BIRT API using 
extension points to develop new chart types. 

Piecewise constant and event charts 
The approach taken for implementing the piecewise constant 
(shown in Figure 4) and event charts is to extend several of 
the BIRT plug-ins [16]. For example, the “data point 
definition” extension point from the Design engine is 
extended to process data sets and their mapping to pixels and 
creating superdense segments. The package for the piecewise 
constant is shown in Figure 5. Definitions for infinity bands 
and transitory state transitions among many others are 



 

specified in the PiecewiseConstantImpl class. Other 
important capabilities (e.g., switching on and off display of 
superdense time segment) for visualization of complex 
content are also supported. Considering the rendering of the 
charts, Figure 6 illustrates use of the BIRT plug-ins. An 
important focus of these plug-ins is to display charts from 
arbitrary data sets that are generated dynamically. These and 
other classes and packages developed for Piecewise Constant 
charts are used for Event charts with appropriate 
modifications. 

 

Figure 5. Classes specifying Piecewise Constant chart 

 
 

Figure 6. Classes for rendering Piecewise Constant chart. 

Integration with the DEVS-Suite simulator 
The DEVS-Suite simulator’s charting engine has major 
limitations common to many classical and contemporary 
tools. Such simulation tools do not directly support the 
concept for superdense time, which is necessary for 
segments that have zero time duration.  

The DEVS-Suite simulator supports generating run-time 
plots that have zero-time segments while allowing state, 
input, and output to have positive and negative infinity 
values. 

The DEVS-Suite Modeling and Simulation tool, supporting 
Parallel DEVS modeling formalism, offers basic support for 
generating linear time Piecewise constant and Event chart 
types at run-time [8]. This simulator was built using the 
Model-Façade-View-Control (MFVC) architecture pattern 
[14]. The View component receives notification from the 
Model and can generate input, output, and state trajectories 
in tabular, piecewise constant and event charts. The 
piecewise constant (or event) chart consists of piecewise 
constant (event) segments. Similar to other classical and 
contemporary simulator tools such as Simulink [12] and 
Ptolemy II [13], superdense time segments and charts as 
defined in this paper are not supported. Given the separation 
of concerns in the MFVC, the Timeview of the DEVS-Suite 
simulator 2.1.0 is extended to support plotting piecewise 
constant and event charts with superdense time segments and 
positive and negative infinity bands at run-time. The top 
level design of the Timeview is illustrated in Figure 7 [16]. 
The Piecewise constant and event chart plugins that are 
developed in BIRT and BIRT’s chart plug-in are used. The 
BIRT scripting is used in the Timeview. It affords 
configuring the attributes of the charts (e.g., label font and 
color, line type and thickness, tick marks, etc.). The scripting 
complements customization using BIRT’s chart wizard. 

  
Figure 7. Illustration of integration of BIRT Piecewise 
Constant and Event Charts with DEVS-Suite’s Timeview. 

 

Exemplar linear and superdense time charts 
As noted above, charts can have both linear with superdense 
time segments and infinity bands as shown in Figure 8. The 
Phase piecewise constant chart is generated from a model 
that undergoes transitory state transitions at time instances 
10.0 and 20.0. In the linear time trajectory part, only the 
phase ݕ_݀݊݁ݏ is displayed. In contrast, in the superdense 
time trajectory, the phase ݁ݒ݅ݏݏܽ can also be viewed. At 
time instance 20.0, there are two contiguous transitory state 
transitions followed by a non-transitory state transition 
(phase ݐݑ_݀݊݁ݏ with ߪ ൌ 10.0ሻ. The sigma piecewise 
constant chart shows the positive infinity band and at time 



 

instance 30.0, phase is ݁ݒ݅ݏݏܽ with ߪ ൌ ∞. In Figure 9, 
event charts with simple and complex data types are shown.  

All the elements in the piecewise constant (and event) chart 
can be customized. The switch for plotting superdense time 
segments is set to off and therefore events generated at time 
instances 10ሾ0ሿ, 20ሾ0ሿ and 20ሾ2ሿ corresponding to the charts 
in Figure 8 are not shown. To avoid cluttering of the charts, 
the 20ሾ0ሿ, 20ሾ1ሿ, and 20ሾ2ሿ time instance labels are 
displayed as 20ሾ0ሿ, ሾ1ሿ, and ሾ2ሿ.  
The axes in the plots have default scales, but can be 
initialized before the simulator starts, or resized when the 
simulator is paused. The inputs, states, and outputs of the 
model components can be individually selected and tracked 
dynamically (see Figure 10). Furthermore, all plots for a 
component can be stacked as shown. This is useful to 
understand complex timings for state transitions, I/O events, 
separately in linear and superdense time to be aligned. 
Rudimentary linear time trajectories was implemented in 
Java AWT in DEVSJAVA [20], the predecessor to the 
DEVS-Suite simulator. 

 
 

Figure 8. Piecewise Constant Charts with linear and 
superdense time segments. 

  
Figure 9. Event charts with linear time segments. 

 

Figure 10. DEVS-Suite’s Component tracking for 
Tracking Log and TimeView.  

RELATED WORKS 
Data visualization is crucial in many science and engineering 
areas. Techniques including data normalization, filtering, 
zooming, etc. are important for creating useful visual data 
representations such as 2D histograms [1]. Tools supporting 
time series that are commonly used in analysis applications 
do not support creating the kinds of charts developed in this 



 

research. They are intended for understanding patterns, 
trends, etc. In contrast to these kinds of charts, for designing 
and experimenting with dynamical simulation models for 
concurrent systems, such charts are insufficient. For this 
reason tools such as D3 [3]. Other tools such as Graphite [7] 
are developed for real-time data storage with support for data 
visualization. Tools such as BIRT support 3D line charts 
where one axis can be used for time variable, one for 
continuous variable and one for discrete variable. 
Alternatively, two axes can be used for linear and superdense 
time with the remaining axis for a variable. One crucial 
difference is that 2D charts, unlike 3D charts, can be stacked 
and evaluated together. The concept of expanding a portion 
of the linear time axis with high resolution relates to our 
work. Users can zoom on any finite time segment of a 2D 
time series with high precision [9]. The spatial representation 
of a plot’s time axis can be scaled uniformly unlike the 
superdense time axis with variable values that may have 
positive and negative infinity bands.  

CONCLUSION 
In this paper, we have described superdense time which is 
central for simulation models such as Parallel DEVS that 
exhibit concurrency. It is important to create trajectories that 
have superdense time segments. In this paper, we have 
detailed this concept with a formulation of it where visual 
representation of superdense time is defined based on its 
mathematical specification. We developed a formulation for 
developing complementary linear and superdense time 
piecewise constant and event chart types with positive and 
negative infinity bands. These can be used for visualizing 
input, output, and state trajectories for DEVS atomic models. 
They are implemented using the BIRT framework. As BIRT 
plug-ins, they can be used in RCP and Java applications. As 
part of the BIRT tool, the piecewise constant and event charts 
defined as ݒ ൈ  data sets (for example stored as CSV	݁݉݅ݐ	
files) can be plotted as static charts in the BIRT Design 
Report. These plug-ins are used in the Timeview module of 
the DEVS-Suite simulator. Time series are dynamically 
plotted alongside I/O animation and tabular log files. These 
piecewise constant and event trajectories can be customized 
which is crucial when simulation data to be visualized is 
complex, numerous, and may not necessarily be known a-
priori. Future work includes supporting other kinds of chart 
types such as continuous piecewise and ൛ݒଵ,⋯ , ൟݒ ൈ  ݁݉݅ݐ
and integrating the BIRT Design Report with the DEVS-
Suite simulator. Another area of research is to offer greater 
degree of customization resulting in greater data modality 
and fewer data trajectories. 
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