

Superdense Time Trajectories for DEVS Simulation Models

Hessam S. Sarjoughian

Arizona Center for Integrative Modeling &
Simulation

School of Computing, Informatics, and Decision
Systems Engineering

Arizona State University, Tempe, AZ, USA
hss@asu.edu

Savitha Sundaramoorthi
Arizona Center for Integrative Modeling &

Simulation
School of Computing, Informatics, and Decision

Systems Engineering
Arizona State University, Tempe, AZ, USA

savitha@asu.edu

ABSTRACT
Many scientific and engineering applications generate data
that are well-suited to be studied using time series charts.
Two types of time series that define input, output, and state
dynamics of DEVS models are piecewise constant and event
charts. In this paper, time series capable of displaying both
linear and superdense time segments and trajectories are
conceptualized and formulated. These lend themselves for
visualizing behavior of parallel atomic and coupled DEVS
models. The concept of superdense time segments is realized
as plug-ins as part of the Eclipse BIRT (Business Intelligence
and Reporting Tool) framework. They can receive time-
based alphanumerical data sets from external static and
dynamic sources, including the DEVS-Suite simulator. As
standalone plug-ins, time series can be used to create static
plots and used in BIRT reports. These plug-ins are also
integrated into the DEVS-Suite simulator where each model
component’s behavior can be customized and dynamically
plotted. Time series charts simplify and complement tabular
logging of data sets for developing simulation models that
exhibit zero-time transitory state transitions.

Author Keywords
BIRT, Data Trajectories; DEVS-Suite Simulator; Dynamic
Visualization, Event Chart, Linear Time; Piecewise Constant
Chart, Superdense Time.

ACM Classification Keywords
D.2.2 [Software Engineering]: Design Tools and
Techniques; D.2.5 [Testing and Debugging]: Debugging
Aids; D.2.6 [Programming Environments] Graphical
Environments; I.6.1 [Simulation Theory]; I.6.4 [Model
Validation and Analysis]; I.6.5 [Model Development]; I.6.6
[Simulation Output Analysis]; I.6.8 [Types of Simulation]:
Visual.

INTRODUCTION
In many component-based modeling approaches, dynamics
of the simulated components and their interactions are
defined in terms of time. Computations and communications
between any two components must occur either sequentially
or concurrently with respect to a clock. The measure of time
between any two consecutive time instances can have
unbounded accuracy (as in continuous time) or bounded
accuracy (as in discrete-time). The notion of linear time is
concisely defined as an algebraic structure 〈ܶ, ≺〉 where ܶ is
a set and ≺ is an ordering relation on the elements of ܶ.
Given ܶ and a set of arbitrary values ܸ with the constraints
that for any ݐ ∈ ܶ there exists only one value ݒ ∈ ܸ,
trajectory charts with linear time can be easily plotted. For
modeling approaches that can support multiple, contiguous
instantaneous state changes the concept of linear time needs
to be augmented with superdense time where two
simultaneous time instances are defined to be contiguous
with time instances	ݐሾ݊ଵሿ	and	ݐሾ݊ଶሿ.
A discrete-time and discrete-event models can be defined in
terms of input and output sequences. In these system-
theoretic modeling formalisms [10,18,19], time is
mathematically defined to be either discrete or continuous.
These models may allow multiple inputs (or outputs) to
occur at an instance of time due to a model being in one or
multiple states for a zero time duration (e.g., parallel DEVS
[2]). The functions responsible for processing these inputs,
changing states, and producing outputs can be
mathematically specified in terms of superdense time [11].
However, to visually render trajectory charts for a finite
number of contiguous state changes at an instance of time
(i.e., instantaneous state transitions) and thus multiple inputs
and outputs occurring an instance of time, visual
representations accommodating superdense time need to be
conceptualized, formulated, and implemented. They are
particularly important for understanding transient state
transitions (state changes in zero time period). State (with
input/output trajectories) are very useful for understanding
time-based dynamics of simulation models and especially
identifying subtle timing issues which may be due to design
flaws and/or implementation errors.

TMS/DEVS 2015, April 12 - 15, 2015, Alexandria, VA, USA © 2015
Society for Modeling & Simulation International (SCS)

A modeling formalism that supports sequential and parallel
model execution and communication is known as Discrete
Event System Specification (DEVS) [2]. The theory of
DEVS modeling is well-suited for conceptualizing
superdense time. Trajectory charts with superdense time can
be systematically defined and developed for tools such as
DEVS-Suite simulator [5,8].

The DEVS formalism, grounded in system-theory [18], is
based on a strong notion of I/O modularity where data
belonging to any model component can only be shared with
another model component via their coupled input and output
ports. Complex, large-scale coupled models can be
composed via tree-structure composition of atomic and
coupled models subject to satisfying the closure under
coupling principle. Inner dynamics of any atomic model
(defined in terms of time and state) can be observed via I/O
variables. Operations in all atomic and coupled model
components can be defined (directly or indirectly) in terms
of a logical time base. As complexity and scale of atomic and
coupled model increases, it is useful to conveniently choose
and observe their dynamics of interests in alternative, and
complementary textual, tabular, and visual forms. Plotting
trajectory charts for models that undergo contiguous,
instantaneous state transitions is desirable although non-
trivial to conceptualize and formulate given the restrictions
imposed for creating input, output, and state trajectories in
finite spatial spaces.

Every model can have input and output variables with
corresponding input and output ports. The data variable types
for inputs, outputs, and states can be simple (e.g., int and
enum primitive data types) or complex (e.g., Integer and
Pair class types). Variables such as Pair have complex
structure (e.g., (key,value), key=(phase,sigma),
value=String) from the standpoint of displaying them
visually. Consequently, crude simplifications are often
employed to display such complex data types. To visually
view these data trajectories requires defining representations
that can capture simultaneity for input, outputs, and states.

The time base used for visual data trajectories can be
restricted to be linear even though the model can undergo
internal or external transition in zero logical time. Limiting
the time base of visual data trajectories to be strictly linear
prevents visualizing transient state changes and generation
of simultaneous events. The dynamics of a model
instantaneously responding to input events or generate
output events cannot be visually created and thus
inaccessible (visualized) while the model being executed.

Another useful capability for visualizing the dynamics of any
atomic model is to display variables belonging to a
component in a “synchronized” fashion. Although an
arbitrary model’s behavior is asynchronous (i.e., inputs,
outputs, and states may occur at distinct time steps during a
simulation cycle), it is useful for the time axes of all selected
data trajectories to be aligned. Such a visualization allows
precise visual observation (evaluation) of the behavior of any
atomic model including its I/O and state changes in response

to internal, external, and confluent transition functions.
Observation of the I/O and state variables can be extended to
include the atomic simulator’s state variables such as time of
last event and time to next event. Alignment of the model’s
and simulator’s visual data trajectories offers the modeler the
ability to examine and understand simple and complex
relationships that exist among external, internal, output, and
time advance functions.

In the DEVS modeling formalism, two key concepts for the
atomic model are allowing time to the next event to be
defined as infinity or zero for the external or internal
transition functions. The former allows future input events to
arrive at arbitrary time instances. This requires visualizing
time to next event data trajectories having the infinity value.
With the latter, transitory state transitions can be allowed.
The consequence is that (input, output, and state) trajectory
charts for all legitimate DEVS models needs to be supported
– i.e., dynamics of any atomic model that has a finite number
of state transitions with zero time durations – can be plotted.
Supporting visualization of superdense time results in
creating trajectory charts for atomic and coupled models that
can receive multiple inputs or outputs at the same time
instance.
TRJACTORIES WITH LINEAR AND SUPERDENSE TIME
BASES

States, inputs, and outputs of any dynamical model can be
defined in terms of linear [19] and superdense time [11].
Time can be represented by a variable ࢚. We can specify
every time-dependent input, state, or output of a model
represented in terms of a variable ࢜ and variable ࢚.
Definition 1. ݐሾ∁ሿ ൌ ݐ ൈ ሾ∁ሿ, ݐ ∈ 	Թ,ஶ,

ା 	∁	∈ Գ	\∞ represents
a collection of time instances that are monotonically ordered
with respect to time ݐ. Time is a linear variable – i.e., given
time duration ݐߜ ≐ ାఓݐ െ ݐ ൌ ߦ and shifted by ߤ ∈ 	Թା,
then ݐߜ ≐ ାఓݐ െ ݐ ൌ ,ߤ ݆ ൌ ݅ The reference value .ߦ	
for ݐ is defined to be zero; it can be shifted by any positive
or negative finite value. For any time instances ݐ and ݐ	that
are equal (i.e., ݐ െ ݐ ൌ 0), they are distinguished using the
index term ∁ – e.g., given ݐሾሿ, ,ሾଵሿݐ ሾଵሿݐ ሾଶሿ, time instantݐ
occurs after ݐሾሿ and before ݐሾଶሿ denoted as ݐሾሿ ≼ 	 ሾଵሿݐ ≼
 ሾଶሿ. The operator ≼ defines weak simultaneity of timeݐ	
which means two consecutive time instances ݐሾሿ and ݐሾାଵሿ
are unequal. The index term ݊ is required if at least there are
two equal time instances. For totally ordered time instances
belonging to ݐ, they degenerate to ⋯ , ,ݐ ,ݐ ,Therefore	,⋯.ݐ

the time base can be ⋯ , ,ݐ ݐ
ሾሿݐ

ሾଵሿ,⋯ , ݐ
ሾሿ, ݉	ℓ,⋯whereݐ ൏

∞. Totally and partially ordered time instances are illustrated
in Figure 1.

Definition 2. ݃ ൌ 	 ሾ∁ሿݐ → is an onto, but not a one-to-one ݒ
function. 	ݒ	 ≐ 	 ሼܽ,⋯ , ሽݖ ∪ ሼܣ,⋯ , ܼሽ ∪ Ժ ∪ Թ	 ∪ േ∞ can
represent alphanumeric values for state, input, and output
variables. Every alphanumeric value has a finite length.
Values at any time instance for input, output, and state
trajectories are determined using ݃	൫ݐሾ∁ሿ൯ ൌ Variables .ݒ

with numeric values are linear. Alphanumeric values have an
arbitrary sequence. The negative and positive infinity values
are the smallest and largest values. When a variable with
alphanumeric values is assigned infinity, the values form a
linear relationship with respect to the negative and positive
infinity values as being the only smallest and the only largest
values. A piecewise constant trajectory with a time that has
both linear and superdense time is illustrated in Figure 2.

A trajectory is defined to be a concatenation of one or more
segments. Two distinct time instance values are required to
define the duration of a segment. The duration of a segment
can be defined to range from zero to infinity inclusively. A
segment can have a duration of zero, in which case its start

and end time instances are partially ordered ݐ
ሾሿ ≼

ݐ	
ሾାଵሿ	(see Definitions 1 and 2). A segment with infinity

duration is linearly ordered – i.e., ݐ 	൏ 	 	ݐ or	ݐ
ሾሿ ൏ 	 ݐ

where	ݐ ് ∞, 	ݐ
ሾሿ ് ∞, ݐ ൌ ∞ and ݍ 0. A segment with

infinity duration is a mathematical artifact which cannot be
exactly displayed.

Figure 1: (a) Time segment satisfying the ൏ linear time
ordering relationship, (b) contiguous time segments each
having zero time duration, (c) contiguous time segments
transformed to superdense time.

A segment can be piecewise constant (i.e., variable ݒ has a
constant value for the duration of the segment). We also have
event segments where there exists a single between ݐ and ݐ

,	ݐ) ݐ	|	ݐ 	൏ 	 ݐ) orݐ
ሾℓሿ and ݐ

ሾℓାଵሿ (see Definitions 1 and
2). Values for a segment can be arbitrary (i.e., values for
segments that have durations greater than zero and less than
infinity can be defined using any function or relation). A
trajectory can be created by concatenating segments using
ሾ, ሻ rule. Therefore, trajectory ߱ ∘ 	߱ଵ for consecutive
piecewise constant ߱ ൌ ߱ andݒ ଵ ൌ ଵ segments shown inݒ
Figure 2, ߱ has value ݒfrom ݐuntil ݐଵand ߱ଵhas value ݒଵ
from ݐଵuntil ݐଶ. Event trajectories follow the same

concatenation rule. Specifically, every event segment in an
event trajectory has its values at the start of the segment with
no values defined for the rest of its time duration (e.g., ߱
has value ݒ at ݐwith no values until ݐଵ).

DEVS I/O AND STATE TRAJECTORIES
The inputs and outputs ܺ , ܻ of any DEVS atomic model ܯ ൌ
〈ܺ, ܵ, ܻ, ,௫௧ߜ ,௧ߜ ,ߜ ,ߣ ܰ and coupled model 〈ܽݐ ൌ
〈ܺ, ܻ, ,ܦ ሼܯௗሽ, ,ܥܫ ,ܥܫܧ are strictly defined as event 〈ܥܱܧ
segments and trajectories. The state of any atomic model are
also strictly defined as piecewise constant segments and
trajectories. Event segments and trajectories may be
transformed to piecewise, continuous, or other forms using
appropriate mapping functions.

The values for trajectories can range from negative to
positive infinity. Therefore, it is necessary for charts to
support visualizing the full range of values a variable may
have. An example of a variable that can have positive infinity
value is time to next event in DEVS atomic model. Clearly,
there may also exist some variable with negative infinity
value. Therefore, input, output, and state piecewise constant
and event trajectories with infinity values are important to be
visually rendered.

Figure 2: Piecewise constant data trajectory with
superdense time base.

Input trajectories
An input is defined as either endogenous or exogenous.
Inputs received from other atomic models are endogenous.
Time-based input variables are defined as ݃ ൌ 	 ሾ∁ሿݐ → .ݒ
Every input value corresponds to a unique time instance (see
Definition 1). Input trajectories generated by sources other
than atomic or coupled model (communicated via
,ܥܫ ,ܥܫܧ couplings) are exogenous. An example of an ܥܱܧ
exogenous input trajectory is a data file having all its entries
satisfying Definitions 1 and 2. These input trajectories can
become endogenous via “autonomous” atomic models that
read such data files and generate output events which in turn
become input events.

Output trajectories
All outputs are endogenous and are generated by atomic
models or other non-simulatable components [15] that
belong to atomic models. Strictly speaking, coupled models
cannot generate outputs on their own due to the closure under
coupling principle.

State trajectories
Any state trajectory can become an output trajectory. The
state ܵ of any atomic models is defined as a set of variables.

States of a model can be specified as ݁ݏ݄ܽ ൈ ߪ ൈ ଵݒ ൈ ⋯ൈ
ߪ	|	ݒ ∈ Ը

ାஶ. The values for ߪ are computed using ܽݐሺݏሻ.
Together ݁ݏ݄ܽ and ߪ define the minimum state set for a
model. They are referred to as the primary states. Phase must
have at least two values in order to define state-based
behavior (i.e., a model must at least be in two distinct states)
[18]. Other variables (i.e., ݒଵ ൈ ⋯ൈ) are called secondary	ݒ
states. There are no restrictions on what secondary variables
may represent, except any variable that is related to time
must be consistent with ߪ as defined in time advance
function ܽݐሺݏሻ. The state variables are commonly analyzed
for run-time simulation verification and model validation.

Every simulation scenario for an atomic model with a finite
number of state transitions must have the same number of
segments as there are state transitions. The simulation
scenario for an input trajectory can have at most the same
number of input segments as there are state transitions. The
same holds for output trajectory. A state transition can be
transitory or non-transitory. Zero logical-time refers to a
simulation cycle (due to either an internal or external
transition function) with ܽݐሺݏሻ ൌ 0. Such segments are
called zero-time segments and conform to Definition 2. In
the context of a logical-time atomic DEVS model, a zero
logical-time segment corresponds to a transitory state
ሻݏሺܽݐ) ൌ 0). For any legitimate DEVS model, there may
only be a finite number of consecutive zero logical-time
segments in any trajectory. Furthermore, only a finite
number of non-transient and transient state transitions may
exist for a simulation scenario having a finite duration. It is
also assumed there is no ordering among simultaneous input
and output events that occur at the same time. The order of
contiguous transient states, however, is determined in the
external transition function which can be deterministic or
not. There is ordering among simultaneous output events.

Given simulation cycle periods specified by ܽݐሺݏሻ in a
model's external or internal transition function, a simulation
scenario can be categorized to have either non-transient state
transitions: Every simulation cycle has a duration greater
than zero and less than infinity or mixed non-transient and
transient state transitions: Every simulation cycle can have
zero, finite, or infinite duration.

Restrictions
To plot trajectories for input, output, or state variables, they
must be a primitive type. The variables that can be plotted
over a time period can be numbers and strings. Numbers can
be integer, real, or others (e.g., bytes). Variable type String
can also be plotted. In principle, symbols (e.g., ⋄ and ⨀) can
be used instead of numbers or strings. If a variable has a
complex type, it must be decomposed to its primitive parts
(numbers and strings) in order to be plotted. If complex data
types can be mapped to symbols, they can be displayed too.

DEVS-Suite simulator variables
It is sometimes useful to plot time of last event ݐ and time
to next event ݐே. These variables belong to the simulation
protocol used in the DEVS-Suite simulator. These variables
specify time duration for the input, output, and state
segments. For an atomic model, ݐேis the time for the internal
transition firing and can also be the time instance at which
outputs are computed and sent out. For a coupled model, ݐேis
the shortest time duration from ݐ for one or more atomic
models which have either an internal transition, an input
scheduled to arrive, or both. Time instances belonging to ݐே
and ݐ can have linear or superdense relationships.

MIXED LINEAR AND SUPERDENSE TIME
TRAJECTORIES
The time axis and spatial axis are distinct. The numerical
time axis has to be mapped to string values, each of which is
spatially displayed using pixels. One approach to display
both linear and superdense time is shown in Figure 3. In this
setting, time axis is composed of linear and superdense time
segments where time instances are labeled as defined above.

Mapping numeric time and value axes to their spatial
counterparts
The duration for linear time segments are defined to be
greater than zero and less than infinity. Time labels for these
segments are unique for any single trajectory. These
numerical numbers map one-to-one to pixels. In contrast, the
duration for every superdense time segment is zero.
Therefore, their time labels are indexed as defined above. A
segment with zero time duration (measured in terms of the
model and simulation time) is defined to have a finite spatial
length which can be in pixels. For example, given the
segment between ݐଵሾ0ሿ and ݐଵሾ1ሿ with ∆ݐ ൌ 0 (i.e., ݐଵሾ0ሿ ≼
ݔ∆ ଷ withݔ ଶ andݔ ଵሾ1ሿ) is mapped toݐ ൌ ߯, which must be a
finite number of pixels (see Figure 3). The ݔଶ	and	ݔଷ	spatial
values	are strictly ordered (i.e., ݔଶ ≺ ଷ) even though theirݔ
corresponding time values are weakly simultaneous. The
spatial length for all superdense time segments for all input,
output, and state variables is assumed to be the same.

Composing linear and superdense time segments as just
described has few shortcomings. Adding or removing
superdense time segments causes charts to expand or shrink.
This is undesirable when the charts are being plotted
dynamically. An alternative approach is shown in Figure 4.
In this setting, the linear and superdense time axes are
separated. This is important as it simplifies visualization of
the charts even though more display space is required.
Another benefit of this approach is that charts can scale.
When there are several series of superdense time segments,
they are separated and therefore simpler to view and
evaluate.

Figure 3. Combined linear and superdense time segments with their spatial counterparts.

Figure 4. Stacked linear and superdense time segments.

Considering the positive and negative values, they too must
be mapped to spatial representations. Since infinity needs to
be plotted relative to a finite value set, it must be mapped to
a number larger than the largest number in the set. If the
value set is known a-priori, it is relatively simple to assign a
finite value to infinity, which can be visually rendered well
relative to the numbers (or strings) in the set. However, in a
dynamic setting, the largest number cannot be known.
Therefore, the (positive or negative) infinity value can be
defined to be a percentage larger than the largest (positive or
negative) value in the value set. If the range of values is very
large (e.g., 1ି to 1ାଵଽ and 1 to 1ାଷ), then the numerical
infinity band (defined as the difference between the largest

number in the set and the assigned value to infinity) can
change dramatically. The data value set including the
assigned finite value to infinity can be mapped to spatial axis
rendered linearly in pixels.

CREATING MIXED LINEAR AND SUPERDENSE CHARTS
Several professional grade plotting tools exist for creating a
different kinds of charts including line charts. Among them
are the Business Intelligent and Reporting Tool [1,17],
JFreeChart [6], and d3.js [3]. The Business Intelligence and
Reporting Tool (BIRT) offers a flexible framework for
extending or creating new kinds of charts. It supports
reporting and business intelligence capabilities for rich client
and web applications, especially those based on Java and
J2EE. Main components for BIRT are its design, report,
chart, and script engines. BIRT has report designer for
creating BIRT reports within the Eclipse IDE [4] , Chart
Builder, and Report Viewer. These can be deployed in any
Java application. BIRT supports different kinds of charts
such as Bar, Pie, Line, Scatter, and Gantt charts among
others. One of its major capabilities is its flexible, rich chart
customization wizard. As BIRT is built using the Eclipse
plugin framework, one can extend the BIRT API using
extension points to develop new chart types.

Piecewise constant and event charts
The approach taken for implementing the piecewise constant
(shown in Figure 4) and event charts is to extend several of
the BIRT plug-ins [16]. For example, the “data point
definition” extension point from the Design engine is
extended to process data sets and their mapping to pixels and
creating superdense segments. The package for the piecewise
constant is shown in Figure 5. Definitions for infinity bands
and transitory state transitions among many others are

specified in the PiecewiseConstantImpl class. Other
important capabilities (e.g., switching on and off display of
superdense time segment) for visualization of complex
content are also supported. Considering the rendering of the
charts, Figure 6 illustrates use of the BIRT plug-ins. An
important focus of these plug-ins is to display charts from
arbitrary data sets that are generated dynamically. These and
other classes and packages developed for Piecewise Constant
charts are used for Event charts with appropriate
modifications.

Figure 5. Classes specifying Piecewise Constant chart

Figure 6. Classes for rendering Piecewise Constant chart.

Integration with the DEVS-Suite simulator
The DEVS-Suite simulator’s charting engine has major
limitations common to many classical and contemporary
tools. Such simulation tools do not directly support the
concept for superdense time, which is necessary for
segments that have zero time duration.

The DEVS-Suite simulator supports generating run-time
plots that have zero-time segments while allowing state,
input, and output to have positive and negative infinity
values.

The DEVS-Suite Modeling and Simulation tool, supporting
Parallel DEVS modeling formalism, offers basic support for
generating linear time Piecewise constant and Event chart
types at run-time [8]. This simulator was built using the
Model-Façade-View-Control (MFVC) architecture pattern
[14]. The View component receives notification from the
Model and can generate input, output, and state trajectories
in tabular, piecewise constant and event charts. The
piecewise constant (or event) chart consists of piecewise
constant (event) segments. Similar to other classical and
contemporary simulator tools such as Simulink [12] and
Ptolemy II [13], superdense time segments and charts as
defined in this paper are not supported. Given the separation
of concerns in the MFVC, the Timeview of the DEVS-Suite
simulator 2.1.0 is extended to support plotting piecewise
constant and event charts with superdense time segments and
positive and negative infinity bands at run-time. The top
level design of the Timeview is illustrated in Figure 7 [16].
The Piecewise constant and event chart plugins that are
developed in BIRT and BIRT’s chart plug-in are used. The
BIRT scripting is used in the Timeview. It affords
configuring the attributes of the charts (e.g., label font and
color, line type and thickness, tick marks, etc.). The scripting
complements customization using BIRT’s chart wizard.

Figure 7. Illustration of integration of BIRT Piecewise
Constant and Event Charts with DEVS-Suite’s Timeview.

Exemplar linear and superdense time charts
As noted above, charts can have both linear with superdense
time segments and infinity bands as shown in Figure 8. The
Phase piecewise constant chart is generated from a model
that undergoes transitory state transitions at time instances
10.0 and 20.0. In the linear time trajectory part, only the
phase ݕ_݀݊݁ݏ is displayed. In contrast, in the superdense
time trajectory, the phase ݁ݒ݅ݏݏܽ can also be viewed. At
time instance 20.0, there are two contiguous transitory state
transitions followed by a non-transitory state transition
(phase ݐݑ_݀݊݁ݏ with ߪ ൌ 10.0ሻ. The sigma piecewise
constant chart shows the positive infinity band and at time

instance 30.0, phase is ݁ݒ݅ݏݏܽ with ߪ ൌ ∞. In Figure 9,
event charts with simple and complex data types are shown.

All the elements in the piecewise constant (and event) chart
can be customized. The switch for plotting superdense time
segments is set to off and therefore events generated at time
instances 10ሾ0ሿ, 20ሾ0ሿ and 20ሾ2ሿ corresponding to the charts
in Figure 8 are not shown. To avoid cluttering of the charts,
the 20ሾ0ሿ, 20ሾ1ሿ, and 20ሾ2ሿ time instance labels are
displayed as 20ሾ0ሿ, ሾ1ሿ, and ሾ2ሿ.
The axes in the plots have default scales, but can be
initialized before the simulator starts, or resized when the
simulator is paused. The inputs, states, and outputs of the
model components can be individually selected and tracked
dynamically (see Figure 10). Furthermore, all plots for a
component can be stacked as shown. This is useful to
understand complex timings for state transitions, I/O events,
separately in linear and superdense time to be aligned.
Rudimentary linear time trajectories was implemented in
Java AWT in DEVSJAVA [20], the predecessor to the
DEVS-Suite simulator.

Figure 8. Piecewise Constant Charts with linear and
superdense time segments.

Figure 9. Event charts with linear time segments.

Figure 10. DEVS-Suite’s Component tracking for
Tracking Log and TimeView.

RELATED WORKS
Data visualization is crucial in many science and engineering
areas. Techniques including data normalization, filtering,
zooming, etc. are important for creating useful visual data
representations such as 2D histograms [1]. Tools supporting
time series that are commonly used in analysis applications
do not support creating the kinds of charts developed in this

research. They are intended for understanding patterns,
trends, etc. In contrast to these kinds of charts, for designing
and experimenting with dynamical simulation models for
concurrent systems, such charts are insufficient. For this
reason tools such as D3 [3]. Other tools such as Graphite [7]
are developed for real-time data storage with support for data
visualization. Tools such as BIRT support 3D line charts
where one axis can be used for time variable, one for
continuous variable and one for discrete variable.
Alternatively, two axes can be used for linear and superdense
time with the remaining axis for a variable. One crucial
difference is that 2D charts, unlike 3D charts, can be stacked
and evaluated together. The concept of expanding a portion
of the linear time axis with high resolution relates to our
work. Users can zoom on any finite time segment of a 2D
time series with high precision [9]. The spatial representation
of a plot’s time axis can be scaled uniformly unlike the
superdense time axis with variable values that may have
positive and negative infinity bands.

CONCLUSION
In this paper, we have described superdense time which is
central for simulation models such as Parallel DEVS that
exhibit concurrency. It is important to create trajectories that
have superdense time segments. In this paper, we have
detailed this concept with a formulation of it where visual
representation of superdense time is defined based on its
mathematical specification. We developed a formulation for
developing complementary linear and superdense time
piecewise constant and event chart types with positive and
negative infinity bands. These can be used for visualizing
input, output, and state trajectories for DEVS atomic models.
They are implemented using the BIRT framework. As BIRT
plug-ins, they can be used in RCP and Java applications. As
part of the BIRT tool, the piecewise constant and event charts
defined as ݒ ൈ data sets (for example stored as CSV	݁݉݅ݐ	
files) can be plotted as static charts in the BIRT Design
Report. These plug-ins are used in the Timeview module of
the DEVS-Suite simulator. Time series are dynamically
plotted alongside I/O animation and tabular log files. These
piecewise constant and event trajectories can be customized
which is crucial when simulation data to be visualized is
complex, numerous, and may not necessarily be known a-
priori. Future work includes supporting other kinds of chart
types such as continuous piecewise and ൛ݒଵ,⋯ , ൟݒ ൈ ݁݉݅ݐ
and integrating the BIRT Design Report with the DEVS-
Suite simulator. Another area of research is to offer greater
degree of customization resulting in greater data modality
and fewer data trajectories.

ACKNOWLEGEMENT
We are grateful to the anonymous referees for their helpful
reviews.

REFERENCES
[1] BIRT 4.4, (2014), http://www.eclipse.org/birt/.
[2] Chow, A.C., Zeigler, B.P., (1994), “Parallel DEVS: a

parallel, hierarchical, modular modeling formalism,”
Winter Simulation Conference, 1994.

[3] Data Driven Documents, (2013), https://ds3js.org.
[4] D'Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., &

McCarthy, P., (2005), The Java Developer's Guide to
ECLIPSE (2nd ed.), Addison Wesley.

[5] DEVS-Suite simulator 2.1.0, (2009), http://devs-
suitesim.sourceforge.net.

[6] JFreeChart, (2013), http://www.jfree.org/index.html.
[7] Graphite, (2011), http://graphite.readthedocs.org.
[8] Kim, S., Sarjoughian, H. S., Elamvazuthi, V., (2009),

“DEVS-suite: A Simulator Supporting Visual
Experimentation Design and Behavior Monitoring,”
Proceedings of the 2009 Spring Simulation Multi-
conference, San Diego, CA.

[9] Kincaid, R., (2010), “SignalLens: Focus+Context
Applied to Electronic Time Series,” IEEE Transactions
on Visualization and Computer Graphics, vol.16, no.6.

[10] Lee, E.A., et al., (2014), System Design, Modeling, and
Simulation using Ptolemy II, http://ptolemy.org.

[11] Manna, Z., Pnueli, A., (1993), The Temporal Logic of
Reactive and Concurrent Systems, Springer, Berlin.

[12] Mathworks, Simulink, (2011),
http://www.mathworks.com/products/simulink.

[13] PtolemyII, (2010), http://ptolemy.eecs.berkeley.edu/.
[14] Sarjoughian, H.S., Singh, R., (2003), “Building

simulation modeling environments using systems
theory and software architecture principles,” Advanced
Simulation Technology Conference, SCS, Wash. DC.

[15] H. S. Sarjoughian and V. Elamvazhuthi, "CoSMoS: a
visual environment for component-based modeling,
experimental design, and simulation", in Proceedings
of the 2nd international conference on simulation tools
and techniques, 2009.

[16] Sundaramoorthi, S., (2014), “Eclipse BIRT Plug-ins
for Dynamic Piecewise Constant and Event Time
Series,” Master’s Thesis, School of Computing,
Informatics and Decision System Engineering, Arizona
State University, Tempe, AZ.

[17] Weatherby, J., Bondur, T., & Chatalbasheva, I., (2011),
Integrating and Extending BIRT (3rd ed.).

[18] Wymore, A.W., (1993), Model-Based Systems
Engineering, CRC Press, Boca Raton.

[19] Zeigler, B.P., (1976), Theory of Modelling and
Simulation, Wiley Interscience, New York.

[20] Zeigler, B.P., Sarjoughian, H.S., Au, V., (1997),
“Object-oriented DEVS: object behavior
specification”, Proceedings of Enabling Technology
for Simulation Science, Orlando, FL.

