
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

A Scalable Component-based Modeling Environment Supporting Model
Validation

Hessam S. Sarjoughian

Arizona Center for Integrative Modeling & Simulation
Computer Science & Engineering Department

Fulton School of Engineering
Arizona State University, Tempe, AZ

Email: sarjoughian@asu.edu

Keywords: Component-based Modeling, Model Development Process, Model Persistence, Scalability,
Transformation, Validation, Visual Modeling.

ABSTRACT
Simulation validation remains a central and growing challenge, especially when models are large-scale and
complex. To advance rigorous simulation validation, we have developed a component-based modeling
environment called Scalable Entity Structure Modeler (SESM), which is based on the multi-aspect, multi-
resolution component-based modeling paradigm. Using a multi-view graphical modeling interface,
modelers can specify and compose large and complex models with arbitrary hierarchies. Models can be
manipulated and stored directly in standardized relational databases—simplifying model specification and
simulation experimentation tasks. A key advantage of a persistent model-base is that it enables modelers to
measure a model’s structural and some behavioral complexity metrics (e.g. number and types of
components, inputs, outputs, and states of models).

A realization of this approach called Scalable Entity Structure Modeler with Complexity Metrics
(SESM/CM) is developed. It supports syntactic and semantic correctness of domain-neutral properties of
models given a set of well-defined relationships among model components and their interactions. The
model components in the model-base can be transformed into XML and subsequently simulation model
components suitable for simulation environments such as DEVSJAVA. The scalability and transformation
features of the approach offer a sound basis for simulation at varying levels of abstraction, including
arbitrary yet systematic validation of models in terms of their observable input and output relations and
state transitions. Direct support for incremental configuration of simulation experimentations and
executions is important for large-scale simulation validation. To this end, the model-base logically lends
itself to the management of simulation experiments. This approach supports formal specification of models,
design of experiments, and observation of simulation executions. The proposed modeling approach is
illustrated using a computer network example. We discuss simulation validation and future research
directions aimed at supporting integrative modeling and simulation of enterprise, supply-network systems.

ABOUT THE AUTHOR
Hessam S. Sarjoughian is Assistant Professor of Computer Science & Engineering department at Arizona
State University (ASU), Tempe, Arizona. His research interests include multi-formalism model
specification, collaborative modeling, agent-based simulation, and software architecture. He is Co-Director
of the Arizona Center for Integrative Modeling and Simulation (ACIMS). He led the establishment of the
Online Masters of Engineering in Modeling & Simulation in the Ira A. Fulton School of Engineering at
ASU. His modeling & simulation educational activities are with the Society for Modeling and Simulation
International (SCS) and the Modeling & Simulation Professional Certification Commission (M&SPCC).

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

INTRODUCTION
There is a consensus among researchers and
practitioners that modeling and simulation activities are
growing in scale and complexity (e.g., see (Fishwick
1995)). At the same time modeling has become one of
the most important and challenging tasks in creating
and managing simulation models that can serve a
variety of needs (Davis and Anderson 2004). It is,
therefore, useful and necessary to enable modelers and
simulationists alike to build models using simple yet
well-defined modeling techniques.

To develop models in a systematic fashion, it is
important to separate a system from its models
(Sarjoughian and Cellier 2001). As shown in Figure 1, a
system can have any number of models depending on
the objectives of the simulation modeling effort.
Generally, models of a system can be differentiated
depending on choices made about its aspect, resolution,
and hierarchy. Models can specify distinct aspects of a
system. For example, for a computer network system, a
model may specify a network of computers and links to
evaluate network topologies to provide service under
high bandwidth media. Alternatively, a multi-stage
computer network model may be developed to study
schemes to protect a network against infected messages.
For an aspect of a system, its model may be specified at
multiple levels of resolution. One computer model may
include stochastic or constant processing time, for
example. Aside from these, a model specification may
have some arbitrary hierarchy. An example is an intra
network modeled as a single computer or as a collection
of computers and switches interconnected with high-
speed links.

Hierarchical models are defined using composition and
specialization concepts. These modeling artifacts are
necessary to specify multi-resolution and multi-aspect
models of systems in terms of their structures and
behaviors (Davis 1995).

As mentioned above, a system’s models can be
distinguished from one another depending on the
desired resolution and the aspect of the system that is
being modeled. In system-theoretic terms, an atomic
model’s resolution can vary based on its number of
inputs, outputs, and state variables as well as the
complexity of operations required for processing inputs
and producing outputs. For a composite model, the
resolution is determined by its components and their
relationships.

Model A

Model C

Model B

hierarchical

real
system

real
system

imagined
system

imagined
system

multi-resolution

multi-aspect

Model A

Model C

Model B

hierarchical

real
system

real
system

imagined
system

imagined
system

multi-resolution

multi-aspect

Figure 1: Systems and Model Relationships

A low-resolution model may be useful (and necessary)
for concepts of operations whereas a high-resolution
model may be desirable for design specification. A low-
resolution model has fewer inputs, outputs, and states
compared to its high-resolution counterpart. Aside from
having simpler structural properties, the operational
properties of a low-resolution model exclude details
that are contained in a high-resolution model.

Given a system’s different perspectives—e.g.,
conceptual analysis vs. engineering design—it is
impractical to define a universal model that can satisfy
what are often contradictory objectives. One model may
be needed for designing a controller of a system while
another may be needed for building the system. The
complementary multi-resolution and multi-aspect
model specifications show the importance of supporting
development and management of a family of models for
a system.

In the remainder of this paper, we describe the Scalable
System Entity Structure Modeler (SESM) framework.
In Sections 2 and 3, we present the SESM framework
and its modeling paradigm. An example illustrating the
features of SESM is described in Section 4. In Section
5, we describe related research and the role of the
proposed environment as a foundation for model
validation (Sargent 1994) which is founded on formal
specification of models, design of experiments, and
observation of simulation executions. We conclude
with future research directions in Section 6.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

A SCALABLE MODELING
FRAMEWORK

A modeling framework should support specification of
models using a general-purpose component-based
modeling paradigm or one that can support multiple
modeling specifications (e.g., continuous and discrete-
time). In this framework, we consider system-theoretic
models where every model component has inputs,
outputs, states, and functions that operate on inputs and
states to generate outputs. Advanced popular modeling
and simulation tools are based on state and time-based
component specifications (e.g., (Modelica 2000)).

As shown in Figure 2, it is important for the framework
to provide database, visualization, and translation
capabilities in order to handle complex and large-scale
model specifications and their mapping to target
simulation languages. The modeling module contains
the syntax and semantics of the modeling paradigm—
i.e., Scalable Entity Structure Modeler. The database
module enables modelers to create, access, and
manipulate persistent model specifications. A
visualization module is important for ease of use (e.g.,
viewing complex relationships among model
components and their properties). The translator
module supports generation of simulation models from
the stored specification models. Simulatable models are
created by mapping model specifications into particular
simulation code that can be executed by alternative
simulation engines.

Collectively, the modeling engine, database, and
translator allow modelers to develop complex models.
Within such a framework, scalability and complexity
related to validation and verification can be undertaken
and managed in a principled manner. That is, modelers
may specify a family of models in an iterative and
incremental fashion where model validation and
simulation verification impediments can be better
overcome.

The Scalable Entity Structure Modeling (SESM)
methodology provides a novel approach to representing
a family of models that have well-defined relationships
and can serve different purposes. For complex models,
we can use alternative hierarchies, under which
different models can be specified to represent different,
unique aspects of a system's structure and/or behavior.
The specifications of these models may be mutually
exclusive depending on whether they share model
components and what type of model hierarchy is used
given decompositions and specializations within the
system.

Modeling
Engine

Simulation
Engine

Translator

Model
Database

system-theoretic
model

specifications

simulation code

XML specification

Visualization

SESM/CM modeling engine architecture

Modeling
Engine

Simulation
Engine

Translator

Model
Database

system-theoretic
model

specifications

simulation code

XML specification

Visualization

SESM/CM modeling engine architecture

Figure 2: Conceptual Architecture Supporting System-
Theoretic Model Specification and Simulation

Execution

MODEL SPECIFICATION APPROACH
Systematic representation and manipulation of scalable
multi-aspect and multi-resolution models depends on
having multiple, complementary model types. Both
logical and visual representation must be supported. An
essential requirement for a modeling engine, therefore,
is to represent models and guarantee their consistency
(as stored in the database) as well as their dynamic
visualization. That is, the modeling engine has to
account for static and dynamic model creation and
manipulation. Clearly, consistency is especially
important as the scale and complexity of models
increase. Consistency of a family of models depends on
the uniqueness of model component compositions and
specializations and the ability of the modeling engine to
ensure that every change to a model is uniformly
applied to the database.

The modeling approach proposed here is targeted for
models that have well-defined external input/output
interfaces and internal structures. We define three
complementary types of models called Template
Model (TM), Instance Template Model (ITM), and
Instance Model (IM) (Sarjoughian 2001).

The separation of a model in terms of TM, ITM, and
IM has three advantages. First, complex structural and

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

behavioral parts of a model can be specified using well-
defined relationships and thus handled in a step-wise
fashion. The Template Models capture individual
model components where a component can have at
most a hierarchy of length two and each model can be
specialized into one or more specializations. The
Instance Template Models are extended from the
Template Models. They are devised for introducing
multiple-levels of hierarchy using decomposition and
specialization schemes. Instance models are
instantiations are generated from the instance template
models for target simulation environments.

Second, since the model specifications are stored in a
relational database, a model can grow in size to
thousands of components without any significant
performance penalty. Third, graphical modeling can
scale well for developing and manipulating large
models. Given these capabilities, modelers can develop
models at different, complementary levels of details
(multi-resolution, multi-aspect) given the separation
afforded by Template Model, Instance Template Model,
and Instance Model.

Template
Model

Instance
Template

Model
Instance

Model

MBITMMBTM MBIM

map map

SESM
Database

Template
Model

Instance
Template

Model
Instance

Model

MBITMMBTM MBIM

map map

SESM
Database

Figure 3: SESM Database with Conceptual TM, ITM,
and IM Model Bases

Given these model types, we can conceptualize three
distinct model repositories1 (or model bases). These are
called MBTM and MBTIM, MBIM. The relationships
(mappings) among these model types are characterized
in terms of two concepts. First, the Instance Template
Models extend the specifications included in the
Template Models by allowing the former models to be
configured hierarchically given alternative

1 The separation of databases is conceptual. All models
are represented in a single database, but can be
distributed if necessary.

decompositions and/or specializations. Second, Instance
Models are created from Instance Template Models by
selecting among available alternative choices (i.e.,
specializations) therein.

Primitive and Composite Models
To specify Template Models, Instance Template
Models, and Instance Models, it is useful to categorize
each model as either primitive or composite. Primitive
and composite models are synonymous with atomic and
coupled models, concepts and techniques that are
commonly used in simulation and software design.

Primitive models cannot have any components, but can
be specialized. These, in general, are simple to
conceptualize and generally straightforward to develop
since each model stands alone. Composite models,
however, have parts and can also have specialization
relationships—i.e., a composite model can have has-
part or kind-of relationships. We note that while the
SESM modeling approach does not support the
association, dependency, and realization
relationships as commonly used in component-based
software analysis and design modeling, the has-part
and kind-of relationships support modeling rich and
complex simulation models.

Primitive Template and Instance Template Models

A primitive Template Model in model base MBTM has a
finite number of input and output ports. It is not aware
of having any parent/child or siblings relationships with
any other (primitive or composite) template model. A
primitive model can be specialized into one of a finite
number of primitive template models where the former
specializes the latter. Each model can be uniquely
identified based on its name, state variables, functions,
and/or input/output interface within its given model
base. Furthermore, primitive template models can only
be used as elements of composite template models.

A primitive Instance Template Model in model base
MBITM is an instantiation of a primitive template model.
Each instance template model is an exact copy of a
template model. All instances of a primitive temple
model are distinguishable from one another using their
assigned (given) names. A primitive instance model
can only be created when its corresponding primitive
template model exists.

Primitive models have limited use by themselves since
the kind-of and has-part relationships are not defined
for them. Such relationships are essential in

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

representing hierarchical complex model structures
(parent-child, alternative choices, and their mixture of
hierarchical forms).

Composite Template and Instance Template Models

A composite Template Model has an identical
input/output interface as that in the primitive Template
Model. It has a unique structure and name within its
model base MBTM. Every model can have as its
elements a finite number of primitive and/or composite
template models. The allowed relationships among
composite template models are has-part and kind-of.
A composite template model can only have a depth of
length two. Exchange of information between
component of a model and with the model itself is
modeled via couplings which simplify specification of
model interactions. The term has-part is used to
emphasize that only composite model know of their
children and not vice versa.

Similarly, kind-of relationships can exist between two
model components. Composite template models are
distinct in that they can be used in multiple composite
instance template models. Composition and
specialization relations are transitive. Given a
component, a child and grandparent composition
relationship may exist where no child can be the same
as its immediate or super parent. Similarly, a
specialization relationship is transitive.

A composite Instance Template Model contained in
MBITM) is an instantiation of a composite template
model. Each instance template model is an exact copy
of a template model where the former can have multiple
copies of a component and it can have arbitrary finite
hierarchy. All instances of a template are
distinguishable from one another using their assigned
(given) names.

Instance Models

The primitive and composite Instance Models are
instances of their respective Instance Template Models.
With Instance Model available, we can translate them
into simulation code. The instance models are generated
in a two-step process. First, a model is selected from the
Instance Template Model. This model can be total or
partial—i.e., a model hierarchy can be of any
hierarchical depth depending on the selected model.
Second, for every model component that is specialized,
one is selected. The resulting Instance Template
Models, therefore, have no specializations. Therefore,
in this process, any instance template model at any level

of hierarchy is reduced to one that can be simulated.
Every instance model represents an aspect of a model at
a specific level of resolution.

Non-simulatable Models

In addition to the models defined above, it is also
important to represent non-simulatable models which
may be used as part of primitive and composite models.
These models are distinct compared with the template
models since they do not have input/output ports.
Furthermore, these do not have time-based behavior as
all template models do. Examples of non-simulatable
models are object-based software components such as
lists and sets.

Structural Modeling
All template model specifications have structural and
behavioral parts. We highlight some of the main
specifications of these models in terms of Entity-
Relationships (ER) (Sarjoughian 2001; Fu 2002; Mohan
2003; Bendre and Sarjoughian 2005). This is
appropriate because although these models can be
manipulated visually (i.e., have object-orientation and
visualization representation), their structure and
behavior are considered to have only a simple
relationship with the modelTemplate as shown in
Figure 4.

An ER diagram depicting the main elements of the
SESM modeling paradigm—the Template Model
(modelTemplate), Instance Template Model
(modelIT), Instance Model (modelInstance), and non-
simulatable models (NSMTemplate)—is shown in
Figure 4. Other elements of the ER diagram such as
port template (portTemplate) and port instance
template (portIT) models have similar ER
specifications. The relational model database
(repository) shown in Figure 2 contains all TM, ITM,
IM, and NSM model components and their
relationships.

Behavioral Modeling
In Systems Theory, the behavior of primitive models is
described in terms of input and output interface (port
names and their assigned values), states, and functions.
The template model defined above is extended to
support having state variables and port variables, each
with name, type, and value. Since primitive and
composite models have identical interfaces, the same
ER diagram (specification) is used for both (see Figure
5). The state of primitive models is represented in terms

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

of name, type and value (see Figure 5(a)). The type
and value choices are decided based on the choice of
programming languages. Furthermore, the state
variables can be arbitrarily defined by modelers. In
particular, non-simulatable models can be used as state
variables. The representation of functions is not
supported in SESM since functions have arbitrarily
structures—no generalized techniques exist to represent
them as Entity-Relations (and thus tables in a standard
relational database). Input and output port templates
definitions are extended to include port variables as
shown in Figure 5 (b).

componentOf

Model Instance

createTime

0, N0, 1

modelTI

1, 1

MTtoMTIcomponentOf

0, N

tiID

tModelType

specialized

0, N

0, 1

0, 1

name

createTime

modelInstance

modelName

iID

componentOfI

1, 1

MTItoMI

0, N 0, N

MTItoSMI

0, 1

NSMTemplate

containsNSM

nsmID

createTime

0, N0, N

modelTemplate

componentOf

Model Instance

createTime

0, N0, 1

modelTI

1, 1

MTtoMTIMTtoMTIcomponentOf

0, N

tiID

tModelType

specialized

0, N

0, 1

0, 1

name

createTime

modelInstance

modelName

iID

componentOfI

1, 1

MTItoMI

0, N 0, N

MTItoSMI

0, 1

NSMTemplate

containsNSM

nsmID

createTime

0, N0, N

modelTemplate

Figure 4: Snippet of the TM, ITM, IM, and NSM
Models and Their Relationship

Complexity Metrics
For any model with a few tens of components, it is
useful to have quantitative measure of their complexity.
The complexity is defined as a set of metrics for
primitive and composite models. For example, for a
primitive model, we can determine its number of output
ports (outP) and state variables (tSt). Similarly,
complexity of a composite model can be measured in

terms of its number of children (iChildren) and total
number of couplings (tCo) at any level of hierarchy
(see Figure 6). Such metrics provide quantitative
analysis of the structural complexity of models.

modelTemplate

NSMTemplate

containsNSM

stateVariable

nsmID createTime

varValue

varType

varName

owner

0,N 0,M

1,1

0,N

(a) Model Template and State Variable

portTemplate

tType tName

varValue

varType varName

1,1

0,N

(b) Port Template and Port Variables

containsSV

portVariable

containsPV

modelTemplate

0,N

1,1

containsPT

modelTemplate

NSMTemplate

containsNSM

stateVariablestateVariable

nsmID createTime

varValue

varType

varName

owner

0,N 0,M

1,1

0,N

(a) Model Template and State Variable

portTemplateportTemplate

tType tName

varValue

varType varName

1,1

0,N

(b) Port Template and Port Variables

containsSV

portVariable

containsPV

modelTemplate

0,N

1,1

containsPT

Figure 5: State Variable Model Template, Port
Template, Port Variable, and Their Relationships

modelTemplate

Metrics

has

1,1

tStoutP iChildren tCo…

modelTemplate

MetricsMetrics

hashas

1,1

tStoutP iChildren tCo…

Figure 6: Structural Complexity Metrics

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

Measuring complexity of hierarchical models is useful,
especially for large-scale models—e.g., it is impractical
to manually measure the number of model components
and their couplings or use any other software tool.
Structural metrics can be computed based on the
information captured in the Template and Instance
Template models. Metrics can also be computed for
Instance models.

Instance Model Translation
As suggested in Section 2, models specified in
SESM/CM can be mapped (translated) into simulation
code (see Figure 2). These simulation codes are not
stored in a database since they can have arbitrary
syntax; instead they are stored as flat files. Specifically,
component-based like models can be completely
translated into simulation code given the targeted
simulation environment. The translation can be direct
from database to simulation code or instead models in
the database can be translated to standard languages
(XML) and then translated to simulation code. For
example, SESM/CM supports translation of primitive
and composite instance models into a DEVSJAVA
target simulation environment, which simulates
Discrete Event System Specification (DEVS) models.
All composite models can be automatically translated to
XML and then to DEVSJAVA simulation models
(DEVSJAVA 2002).

Primitive models, however, can be translated into
simulation code only partially since generalized

functions (e.g., external transition function or
initialization of a model) cannot be stored in a relational
database in a systematic fashion. The translated
DEVSJAVA code includes “templates” (place holders)
which must be completed via SESM editor or an IDE
environment such as Eclipse. The input/output
interfaces of atomic and coupled models (input and
output ports, variables, and types) as well as state
variables of atomic models are automatically mapped
into DEVSJAVA simulation code.

SESM/CM ENVIRONMENT
A realization of the modeling approach presented in the
previous section has been developed using Java and
DBMS technologies. This environment called
SESM/CM has client-server architecture. As shown in
Figure 7, a modeler client has multiple views to
graphically specify template, instance template, and
instance models stored in a database and managed by a
server. In the left-hand frame, there are two tabs:
Simulatable and Non-Simulatable. The tree
structures of the Template Model, Instance Template
Model and Instance Model are available as three tabs
(TM, ITM, IM) under the Simulatable tab. The Non-
Simulatable tab shows the names of the models. Non-
simulatable models may be stored (and viewed) in
hierarchical directory structure, but they do not contain
any modeling relationships as defined for simulatable
models. The non-simulatable models are not stored in a
database since they have arbitrary specifications.

Figure 7: SESM/CM Environment

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

In the right panel, modelers can view the block
representation of the TM, ITM, and IM models.
Coupling relationships, specification of states (variables
and types), and ports (port names, variables, and types)
are supported in this panel. Complexity metrics and
translation to XML and simulation code are also
supported in this panel.

Model components and their ports are displayed in the
right-hand frame and correspond to the model type
(e.g., Instance Template Model) in the left panel. Under
the Operation menu item, template models and instance
models can be created. Some highlights of the model
views shown in Figure 7 are described using a simple
example below.

Demonstration of the SESM/CM Environment:
VirusFreeNetwork
To help illustrate the Scalable Entity Structure Modeler
with Complexity Metrics environment, we use as our
example a computer network with the capability to
detect and remove infected messages. One of the
models in this system, called VirusFreeNetwork, is
devised to destroy messages found to be infected. To
model this and other types of computer networks (e.g.,
VulnerableNetwork), we have defined a set of
primitive and composite models as shown in Figures 7
(template models) and 8 (instance template models).

There are five primitive template models. The
Processor model's role is to process messages
generated by the MsgGenr and send them to port out
of its parent (AntiVirusComputer) if there are no
messages alerting the processor that specific messages
may be infected. If Processor receives a message from
the MsgGenr and received an alert message from the
VirusMsgGenr, the Processor sends the MsgGenr
message to the AntiVirusProcessor.

The AntiVirusComputer determines (e.g., randomly)
whether or not a message is infected. If it is infected, it
is sent to the second AntiVirusComputer in the
TwoStageAntiVirusNetwork for further processing.
Otherwise, it is sent to the input port inNet of the
VirusAttackExpSetp via specified couplings. The
AntiVirusProcessor is specialized into FastAntiVirus
and SlowAntiVirus where the latter takes more time to
detect viruses compared to the former (e.g., using
complex algorithms to detect difficult to find viruses).
Each of these specialized models is also a primitive
template model.

The MsgGenr and the VirusMsgGenr generate (safe,
infected, and alert) messages for the

TwoStageAntiVirusNetwork component. The
Transducer keeps track of the
TwoStageAntiVirusNetwork and messages generated
by the MsgGenr and VirusMsgGenr to compute
statistics such as ratio of safe vs. infected messages or
percentage of infected messages that were disinfected.

Figure 8: Hierarchical VirusFreeNetwork Instance
Template Models

A number of composite instance template models are
shown in Figure 8. For example, the
AntiVirusComputer instance template model has
Processor and AntiVirusProcessor primitive instance
template models where the latter is specialized into
FastAntiVirus and SlowAntiVirus template models.
As shown in Figure 9, the AntiVirusComputer model
has feed-forward and feedback couplings with external
input and output couplings. Other composite template
models such, as FourStageVulnerableNetwork, are
defined using the primitive and composite template
models available in the TemplateModel database
(MBTM).

Each instance composite instance template models that
is part of parent model has a multiplicity number. For
example, in the AntiVirusComputer model, there are
two instances and shown as AntiVirusComputer [2]. In
the case of specialization models such as

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

AntiVirusProcess, the multiplicity for the specialized
models is undefined (shown as FastAntiVirus [u]).
This is appropriate since the multiplicity is assigned to
the model and not its specializations.

Figure 9: AntiVirusComputer Composite Instance
Template Model

Figure 10: Instance Model Snippet for
TwoStageAntiVirusNetwork

Figures 9 and 10 are visual representations of an
instance template and instance models, respectively.
The AntiVirusProcessor model is a specialized
model—in creating an instance model, the modeler is
requested to separate slow and fast types. The
TwoStageAntiVirusNetwork model is instantiated
from its instance template model. SESM/CM assigns
instance model components unique names. As shown,
the AntiVirusComputer_1_1 and
AntiVirusComputer_2_2 instance models differ in
terms of their AntiVirusProcessor primitive models
(i.e., SlowAntiVirus_0_1 and FastAntiVirus_0_1)
although they could be identical (see Figure 10).

Complexity Metrics
Models specified in SESM/CM can be analyzed in
terms of their structure. The structures of primitive and
composite model components differ. We have defined a
set of structural complexity metrics for instance
template models to quantitatively determine static
model complexity. The metrics for the composite
instance template model VirusFreeNetwork is shown
in Figure 11. The complexity metrics for primitive
instance template models are a subset of those for
composite instance template models. These structural
complexity metrics offer information before any
simulation experiments are undertaken. In this regard,
system and simulation architects and designers can
evaluate non-behavioral model specifications.

Figure 11: VirusFreeNetwork Structural Metrics

Figure 12: MsgGenr Behavioral Metrics

In addition, we have defined a set of behavioral
complexity metrics to complement structural
complexity metrics. The input, output, and state
variables of primitive model components show the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

complexity of input and output message types and
states (see Figure 12). The number of components,
ports, etc allows modelers to quantitatively assess the
complexity of individual primitive components as well
as their composition. The aggregate metrics for the
composite components are easy and efficient to
compute since every primitive and composite model is
stored in a relational database.

Model Validation
A key capability of any modeling methodology is to
support model validation and simulation verification. A
modeling environment not only needs to enable model
specifications, but also facilitate the simulation
development lifecycle. The SESM/CM framework
described above supports generic component-based and
incremental, iterative process for model specification,
both of which are necessary to simulation modeling of
contemporary systems. Given the Federation
Development Process (FEDEP) lifecycle (IEEE
2003)—consisting of federation objectives formulation,
conceptual model definition, federation design
specification, federation integration and testing and
experimentation)—SESM/CM can be used across all of
its steps. In particular, the range of modeling
capabilities is well suited for conceptual and design
specifications. Its database feature can support FOM
model persistence and SOM generation via XML-based
simulation code generation. Furthermore, the
framework supports validation and verification not only
from a behavioral aspect but also provides structural
aspect (i.e., structural and behavioral metrics depicted
in Figures 11 and 12, respectively).

RELATED RESEARCH
Various approaches have been proposed to represent,
use, and manage relationships such as has-part and
kind-of among a set of entities (e.g., models). One such
approach is known as the System Entity Structure
(SES) (Zeigler 1984; Rozenblit and Zeigler 1993). It
supports decomposition and specialization. This
approach supports representing a family of models as a
labeled tree with attached variable types with a set of
axioms. The key axioms are uniformity (any two nodes
which have the same label have identical attached
variable types and isomorphic sub-trees), strict
hierarchy (no label appears more than once down any
path of the tree), alternating mode (each node has a
mode which is either entity, aspect, or specialization)
and inheritance (every entity in a specialization inherits
all the variables, aspects, and specializations from the

parent of the specialization). The remaining two axioms
are valid brothers (no two brothers have the same label)
and attached variables (no two variable types attached
to the same item have the same name).

System Entity Structure employs a model base and an
entity structure base, each of which corresponds to a
directory-style file system. The model base contains
primitive (atomic) as well as composite (coupled)
models. An entity structure is similar to SESM in that it
contains template models as well as instance models of
a model base. However, it does not define how to
distinguish between template and instance template
models. The consequence is SESM does not use the
alternating modes to specify a family of models.
Instead, the Instance Template Model offers a new
mechanism to model a family of models from template
models—the key benefit of this simpler approach is its
ability to handle complex model structures and
scalability. Furthermore, models in SESM/CM are
stored in a relational database that supports scalability
and complexity metrics. Another capability is visual
modeling.

In a separate work, a relational algebraic representation
of SES was developed (Park, Lee et al. 1997). A
relational database (ESQL/C, a SQL-compliant
database supporting C language) was developed to
capture the models. The work presented here is
significantly different as the SESM/CM modeling
approach offers new capabilities key for handling large-
scale, complex systems (e.g., complexity and
behavioral metrics and partial and total mapping of
primitive and composite models into simulation code).

Aside from these, there exist UML and supporting
software engineering tools for modeling. These offer
specifying has-part and kind-of relationships, but the
concepts and techniques introduced in SESM do not
exist in UML and therefore are not supported by any
software engineering modeling tool. Aside from these
XML (XML 2005) and its variants offer syntactic
representation that may be used with the SESM/CM
specification.

FUTURE DIRECTIONS
The SESM modeling approach is generic and thus it is
important to extend it to support specific domains of
interest. This approach is especially relevant for
managing knowledge domains and thus basic
ingredients of models that exist for challenging
domains such as wireless network systems, Joint
Synthetic Battle Space, and supply-chain systems. The

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2005

Accepted for Publication

capability for domain-specific model specification can
facilitate application of the proposed approach for real-
world case-studies.

A promising basic research direction is in extending the
approach to support other types of model specifications
such as continuous models, agent models, and observed
(measured) data sources. This extends support for
domain-specific model development. Additional model
specifications in turn require developing corresponding
translators for generating simulation code suitable for
different simulation engines.

Another area of interest is support for collaborative
modeling. In this direction, we are extending our work
for collaborative use. The basic SESM/CM visual
modeling features (e.g., automatic placement of model
components in a diagonal layout and couplings with
minimal crossing) provide scalable workspace for
building models of real-world systems. The basic
infrastructure supported by SESM including its
database, client/server software design, and XML-based
model translation, supports its extension to a
collaborative environment. Finally, Grid Services and
Service-Oriented Architecture are important
technologies for further development of SESM/CM that
could help extend it to industrial strength simulation
development and testing.

CONCLUSIONS
In this paper we proposed a SESM/CM approach for
developing models for a class of contemporary systems
where they lend themselves to hierarchical simulation
model specification. This framework supports
development of models in a step-wise fashion where
template models serve as a basis to specify instance
template and instance models thus offering a new way
of handling model scalability and complexity. The
modeling approach enables structural and behavioral
model specification of models that can be stored in
databases. Aside from supporting model consistency,
modelers can evaluate structural traits of their models
using complexity metrics. Finally, the approach
provides a basis for model validation via systematic
model specification of large-scale, complex models and
automatic translation into simulation code.

ACKNOWLEDGEMENTS
This research has been supported in part by NSF DMI-
0075557 and Intel Research Council grants. I would
like to thank Dr. Jim Wall of Texas A&M University
for his initiative and support of this paper. Also thanks

to T-S Fu, S. Mohan, S. Bendre, and R. Flasher who
have contributed to the various aspect of the SESM
software development.

REFERENCES
Bendre, S. and H. S. Sarjoughian (2005). Discrete-

Event Behavioral Modeling in SESM: Software
Design and Implementation. Advanced Simulation
Technology Symposium, San Diego, CA.

Davis, P. K. (1995). Aggregation, Disagreegation, and
the 3:1 Rule in Ground Combat, RAND.

Davis, P. K. and R. H. Anderson (2004). Improving the
Composability of Department of Defense Models
and Simulations. Santa Monica, CA, Rand.

DEVSJAVA. (2002). DEVSJAVA Modeling &
Simulation, http://www.acims.arizona.edu.

Fishwick, P. A. (1995). Simulation Model Design and
Execution: Building Digital Worlds, Prentice Hall.

Fu, T.-S. (2002). Hierarchical Modeling of Large-Scale
Systems Using Relational Databases. Electrical and
Computer Engineering. Tucson, Arizona,
University of Arizona.

IEEE (2003). HLA Federation Development and
Execution Process, IEEE 1516.3, IEEE.

Modelica (2000). Modelica Association.
http://www.modelica.org/.

Mohan, S. (2003). Measuring Structural Complexities
of Modular, Hierarchical Large-scale Models.
Computer Science and Engineering. Tempe,
Arizona, Arizona State University.

Park, H. C., W. B. Lee, et al. (1997). “RASES: A
Database Supported Framework for Structured
Model Base Management.” Simulation Practice
and Theory Vol. 5 (No. 4, May 1997): 289 - 313.

Rozenblit, J. R. and B. P. Zeigler (1993). Representing
and Construction System Specifications Using the
System Entity Structure Concepts. Winter
Simulation Conference, Los Angeles.

Sargent, R. G. (1994). Verification and Validation of
Simulation Models. Winter Simulation Conference.

Sarjoughian, H. S. (2001). An Approach for Scalable
Model Representation and Management. Tempe,
Arizona, Computer Science & Engr., Arizona State
University.

Sarjoughian, H. S. and F. E. Cellier, Eds. (2001).
Discrete Event Modeling and Simulation
Technologies: A Tapestry of Systems and AI-Based
Theories and Methodologies, Springer Verlag.

XML. (2005). http://www.w3.org/XML/.
Zeigler, B. P. (1984). Multi-Facetted Modeling and

Discrete Event Simulation. New York, Academic
Press.

