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ABSTRACT 
Simulation validation remains a central and growing challenge, especially when models are large-scale and 
complex. To advance rigorous simulation validation, we have developed a component-based modeling 
environment called Scalable Entity Structure Modeler (SESM), which is based on the multi-aspect, multi-
resolution component-based modeling paradigm. Using a multi-view graphical modeling interface, 
modelers can specify and compose large and complex models with arbitrary hierarchies. Models can be 
manipulated and stored directly in standardized relational databases—simplifying model specification and 
simulation experimentation tasks.  A key advantage of a persistent model-base is that it enables modelers to 
measure a model’s structural and some behavioral complexity metrics (e.g. number and types of 
components, inputs, outputs, and states of models). 

A realization of this approach called Scalable Entity Structure Modeler with Complexity Metrics 
(SESM/CM) is developed. It supports syntactic and semantic correctness of domain-neutral properties of 
models given a set of well-defined relationships among model components and their interactions. The 
model components in the model-base can be transformed into XML and subsequently simulation model 
components suitable for simulation environments such as DEVSJAVA.  The scalability and transformation 
features of the approach offer a sound basis for simulation at varying levels of abstraction, including 
arbitrary yet systematic validation of models in terms of their observable input and output relations and 
state transitions. Direct support for incremental configuration of simulation experimentations and 
executions is important for large-scale simulation validation. To this end, the model-base logically lends 
itself to the management of simulation experiments. This approach supports formal specification of models, 
design of experiments, and observation of simulation executions.  The proposed modeling approach is 
illustrated using a computer network example. We discuss simulation validation and future research 
directions aimed at supporting integrative modeling and simulation of enterprise, supply-network systems.  
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INTRODUCTION 
There is a consensus among researchers and 
practitioners that modeling and simulation activities are 
growing in scale and complexity (e.g., see (Fishwick 
1995)). At the same time modeling has become one of 
the most important and challenging tasks in creating 
and managing simulation models that can serve a 
variety of needs (Davis and Anderson 2004).  It is, 
therefore, useful and necessary to enable modelers and 
simulationists alike to build models using simple yet 
well-defined modeling techniques.  

To develop models in a systematic fashion, it is 
important to separate a system from its models 
(Sarjoughian and Cellier 2001). As shown in Figure 1, a 
system can have any number of models depending on 
the objectives of the simulation modeling effort. 
Generally, models of a system can be differentiated 
depending on choices made about its aspect, resolution, 
and hierarchy. Models can specify distinct aspects of a 
system. For example, for a computer network system, a 
model may specify a network of computers and links to 
evaluate network topologies to provide service under 
high bandwidth media. Alternatively, a multi-stage 
computer network model may be developed to study 
schemes to protect a network against infected messages. 
For an aspect of a system, its model may be specified at 
multiple levels of resolution. One computer model may 
include stochastic or constant processing time, for 
example. Aside from these, a model specification may 
have some arbitrary hierarchy. An example is an intra 
network modeled as a single computer or as a collection 
of computers and switches interconnected with high-
speed links.  

Hierarchical models are defined using composition and 
specialization concepts. These modeling artifacts are 
necessary to specify multi-resolution and multi-aspect 
models of systems in terms of their structures and 
behaviors (Davis 1995).  

As mentioned above, a system’s models can be 
distinguished from one another depending on the 
desired resolution and the aspect of the system that is 
being modeled. In system-theoretic terms, an atomic 
model’s resolution can vary based on its number of 
inputs, outputs, and state variables as well as the 
complexity of operations required for processing inputs 
and producing outputs. For a composite model, the 
resolution is determined by its components and their 
relationships.  
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Figure 1: Systems and Model Relationships 

A low-resolution model may be useful (and necessary) 
for concepts of operations whereas a high-resolution 
model may be desirable for design specification. A low-
resolution model has fewer inputs, outputs, and states 
compared to its high-resolution counterpart. Aside from 
having simpler structural properties, the operational 
properties of a low-resolution model exclude details 
that are contained in a high-resolution model.  

Given a system’s different perspectives—e.g., 
conceptual analysis vs. engineering design—it is 
impractical to define a universal model that can satisfy 
what are often contradictory objectives. One model may 
be needed for designing a controller of a system while 
another may be needed for building the system. The 
complementary multi-resolution and multi-aspect 
model specifications show the importance of supporting 
development and management of a family of models for 
a system.  

In the remainder of this paper, we describe the Scalable 
System Entity Structure Modeler (SESM) framework. 
In Sections 2 and 3, we present the SESM framework 
and its modeling paradigm.  An example illustrating the 
features of SESM is described in Section 4.  In Section 
5, we describe related research and the role of the 
proposed environment as a foundation for model 
validation (Sargent 1994) which is founded on formal 
specification of models, design of experiments, and 
observation of simulation executions. We conclude 
with future research directions in Section 6. 
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A SCALABLE MODELING 
FRAMEWORK 

A modeling framework should support specification of 
models using a general-purpose component-based 
modeling paradigm or one that can support multiple 
modeling specifications (e.g., continuous and discrete-
time). In this framework, we consider system-theoretic 
models where every model component has inputs, 
outputs, states, and functions that operate on inputs and 
states to generate outputs. Advanced popular modeling 
and simulation tools are based on state and time-based 
component specifications (e.g., (Modelica 2000)). 

As shown in Figure 2, it is important for the framework 
to provide database, visualization, and translation 
capabilities in order to handle complex and large-scale 
model specifications and their mapping to target 
simulation languages. The modeling module contains 
the syntax and semantics of the modeling paradigm—
i.e., Scalable Entity Structure Modeler. The database 
module enables modelers to create, access, and 
manipulate persistent model specifications. A 
visualization module is important for ease of use (e.g., 
viewing complex relationships among model 
components and their properties). The translator 
module supports generation of simulation models from 
the stored specification models. Simulatable models are 
created by mapping model specifications into particular 
simulation code that can be executed by alternative 
simulation engines.  

Collectively, the modeling engine, database, and 
translator allow modelers to develop complex models. 
Within such a framework, scalability and complexity 
related to validation and verification can be undertaken 
and managed in a principled manner. That is, modelers 
may specify a family of models in an iterative and 
incremental fashion where model validation and 
simulation verification impediments can be better 
overcome.  

The Scalable Entity Structure Modeling (SESM) 
methodology provides a novel approach to representing 
a family of models that have well-defined relationships 
and can serve different purposes. For complex models, 
we can use alternative hierarchies, under which 
different models can be specified to represent different, 
unique aspects of a system's structure and/or behavior. 
The specifications of these models may be mutually 
exclusive depending on whether they share model 
components and what type of model hierarchy is used 
given decompositions and specializations within the 
system.   
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Figure 2: Conceptual Architecture Supporting System-
Theoretic Model Specification and Simulation 

Execution 

MODEL SPECIFICATION APPROACH 
Systematic representation and manipulation of scalable 
multi-aspect and multi-resolution models depends on 
having multiple, complementary model types. Both 
logical and visual representation must be supported. An 
essential requirement for a modeling engine, therefore, 
is to represent models and guarantee their consistency 
(as stored in the database) as well as their dynamic 
visualization. That is, the modeling engine has to 
account for static and dynamic model creation and 
manipulation. Clearly, consistency is especially 
important as the scale and complexity of models 
increase. Consistency of a family of models depends on 
the uniqueness of model component compositions and 
specializations and the ability of the modeling engine to 
ensure that every change to a model is uniformly 
applied to the database.  

The modeling approach proposed here is targeted for 
models that have well-defined external input/output 
interfaces and internal structures. We define three 
complementary types of models called Template 
Model (TM), Instance Template Model (ITM), and 
Instance Model (IM) (Sarjoughian 2001).  

The separation of a model in terms of TM, ITM, and 
IM has three advantages. First, complex structural and 
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behavioral parts of a model can be specified using well-
defined relationships and thus handled in a step-wise 
fashion. The Template Models capture individual 
model components where a component can have at 
most a hierarchy of length two and each model can be 
specialized into one or more specializations.  The 
Instance Template Models are extended from the 
Template Models.  They are devised for introducing 
multiple-levels of hierarchy using decomposition and 
specialization schemes. Instance models are 
instantiations are generated from the instance template 
models for target simulation environments. 

Second, since the model specifications are stored in a 
relational database, a model can grow in size to 
thousands of components without any significant 
performance penalty. Third, graphical modeling can 
scale well for developing and manipulating large 
models. Given these capabilities, modelers can develop 
models at different, complementary levels of details 
(multi-resolution, multi-aspect) given the separation 
afforded by Template Model, Instance Template Model, 
and Instance Model.  
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Figure 3: SESM Database with Conceptual TM, ITM, 
and IM Model Bases  

Given these model types, we can conceptualize three 
distinct model repositories1 (or model bases). These are 
called MBTM and MBTIM, MBIM.  The relationships 
(mappings) among these model types are characterized 
in terms of two concepts. First, the Instance Template 
Models extend the specifications included in the 
Template Models by allowing the former models to be 
configured hierarchically given alternative 

                                                 
1 The separation of databases is conceptual. All models 
are represented in a single database, but can be 
distributed if necessary. 

decompositions and/or specializations. Second, Instance 
Models are created from Instance Template Models by 
selecting among available alternative choices (i.e., 
specializations) therein.  

Primitive and Composite Models 
To specify Template Models, Instance Template 
Models, and Instance Models, it is useful to categorize 
each model as either primitive or composite. Primitive 
and composite models are synonymous with atomic and 
coupled models, concepts and techniques that are 
commonly used in simulation and software design.  

Primitive models cannot have any components, but can 
be specialized. These, in general, are simple to 
conceptualize and generally straightforward to develop 
since each model stands alone. Composite models, 
however, have parts and can also have specialization 
relationships—i.e., a composite model can have has-
part or kind-of relationships. We note that while the 
SESM modeling approach does not support the 
association, dependency, and realization 
relationships as commonly used in component-based 
software analysis and design modeling, the has-part 
and kind-of relationships support modeling rich and 
complex simulation models. 

Primitive Template and Instance Template Models 

A primitive Template Model in model base MBTM has a 
finite number of input and output ports. It is not aware 
of having any parent/child or siblings relationships with 
any other (primitive or composite) template model. A 
primitive model can be specialized into one of a finite 
number of primitive template models where the former 
specializes the latter. Each model can be uniquely 
identified based on its name, state variables, functions, 
and/or input/output interface within its given model 
base.  Furthermore, primitive template models can only 
be used as elements of composite template models.  

A primitive Instance Template Model in model base 
MBITM is an instantiation of a primitive template model. 
Each instance template model is an exact copy of a 
template model. All instances of a primitive temple 
model are distinguishable from one another using their 
assigned (given) names.  A primitive instance model 
can only be created when its corresponding primitive 
template model exists. 

Primitive models have limited use by themselves since 
the kind-of and has-part relationships are not defined 
for them. Such relationships are essential in 
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representing hierarchical complex model structures 
(parent-child, alternative choices, and their mixture of 
hierarchical forms).   

Composite Template and Instance Template Models 

A composite Template Model has an identical 
input/output interface as that in the primitive Template 
Model. It has a unique structure and name within its 
model base MBTM. Every model can have as its 
elements a finite number of primitive and/or composite 
template models. The allowed relationships among 
composite template models are has-part and kind-of. 
A composite template model can only have a depth of 
length two. Exchange of information between 
component of a model and with the model itself is 
modeled via couplings which simplify specification of 
model interactions.  The term has-part is used to 
emphasize that only composite model know of their 
children and not vice versa.  

Similarly, kind-of relationships can exist between two 
model components. Composite template models are 
distinct in that they can be used in multiple composite 
instance template models. Composition and 
specialization relations are transitive. Given a 
component, a child and grandparent composition 
relationship may exist where no child can be the same 
as its immediate or super parent. Similarly, a 
specialization relationship is transitive.  

A composite Instance Template Model contained in 
MBITM) is an instantiation of a composite template 
model. Each instance template model is an exact copy 
of a template model where the former can have multiple 
copies of a component and it can have arbitrary finite 
hierarchy. All instances of a template are 
distinguishable from one another using their assigned 
(given) names.  

Instance Models 

The primitive and composite Instance Models are 
instances of their respective Instance Template Models.  
With Instance Model available, we can translate them 
into simulation code. The instance models are generated 
in a two-step process. First, a model is selected from the 
Instance Template Model. This model can be total or 
partial—i.e., a model hierarchy can be of any 
hierarchical depth depending on the selected model. 
Second, for every model component that is specialized, 
one is selected. The resulting Instance Template 
Models, therefore, have no specializations. Therefore, 
in this process, any instance template model at any level 

of hierarchy is reduced to one that can be simulated.  
Every instance model represents an aspect of a model at 
a specific level of resolution.  

Non-simulatable Models 

In addition to the models defined above, it is also 
important to represent non-simulatable models which 
may be used as part of primitive and composite models. 
These models are distinct compared with the template 
models since they do not have input/output ports. 
Furthermore, these do not have time-based behavior as 
all template models do.  Examples of non-simulatable 
models are object-based software components such as 
lists and sets.  

Structural Modeling 
All template model specifications have structural and 
behavioral parts. We highlight some of the main 
specifications of these models in terms of Entity-
Relationships (ER) (Sarjoughian 2001; Fu 2002; Mohan 
2003; Bendre and Sarjoughian 2005). This is 
appropriate because although these models can be 
manipulated visually (i.e., have object-orientation and 
visualization representation), their structure and 
behavior are considered to have only a simple 
relationship with the modelTemplate as shown in 
Figure 4. 

An ER diagram depicting the main elements of the 
SESM modeling paradigm—the Template Model 
(modelTemplate), Instance Template Model 
(modelIT), Instance Model (modelInstance), and non-
simulatable models (NSMTemplate)—is shown in 
Figure 4. Other elements of the ER diagram such as 
port template (portTemplate) and port instance 
template (portIT) models have similar ER 
specifications. The relational model database 
(repository) shown in Figure 2 contains all TM, ITM, 
IM, and NSM model components and their 
relationships. 

Behavioral Modeling 
In Systems Theory, the behavior of primitive models is 
described in terms of input and output interface (port 
names and their assigned values), states, and functions. 
The template model defined above is extended to 
support having state variables and port variables, each 
with name, type, and value. Since primitive and 
composite models have identical interfaces, the same 
ER diagram (specification) is used for both (see Figure 
5). The state of primitive models is represented in terms 
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of name, type and value (see Figure 5(a)). The type 
and value choices are decided based on the choice of 
programming languages. Furthermore, the state 
variables can be arbitrarily defined by modelers. In 
particular, non-simulatable models can be used as state 
variables. The representation of functions is not 
supported in SESM since functions have arbitrarily 
structures—no generalized techniques exist to represent 
them as Entity-Relations (and thus tables in a standard 
relational database).  Input and output port templates 
definitions are extended to include port variables as 
shown in Figure 5 (b). 
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Figure 4: Snippet of the TM, ITM, IM, and NSM 
Models and Their Relationship 

Complexity Metrics 
For any model with a few tens of components, it is 
useful to have quantitative measure of their complexity.  
The complexity is defined as a set of metrics for 
primitive and composite models. For example, for a 
primitive model, we can determine its number of output 
ports (outP) and state variables (tSt). Similarly, 
complexity of a composite model can be measured in 

terms of its number of children (iChildren) and total 
number of couplings (tCo) at any level of hierarchy 
(see Figure 6).  Such metrics provide quantitative 
analysis of the structural complexity of models.   
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Figure 5: State Variable Model Template,  Port 
Template, Port Variable, and Their Relationships 
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Figure 6: Structural Complexity Metrics 
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Measuring complexity of hierarchical models is useful, 
especially for large-scale models—e.g., it is impractical 
to manually measure the number of model components 
and their couplings or use any other software tool. 
Structural metrics can be computed based on the 
information captured in the Template and Instance 
Template models. Metrics can also be computed for 
Instance models. 

Instance Model Translation 
As suggested in Section 2, models specified in 
SESM/CM can be mapped (translated) into simulation 
code (see Figure 2). These simulation codes are not 
stored in a database since they can have arbitrary 
syntax; instead they are stored as flat files. Specifically, 
component-based like models can be completely 
translated into simulation code given the targeted 
simulation environment. The translation can be direct 
from database to simulation code or instead models in 
the database can be translated to standard languages 
(XML) and then translated to simulation code. For 
example, SESM/CM supports translation of primitive 
and composite instance models into a DEVSJAVA 
target simulation environment, which simulates 
Discrete Event System Specification (DEVS) models. 
All composite models can be automatically translated to 
XML and then to DEVSJAVA simulation models 
(DEVSJAVA 2002).   

Primitive models, however, can be translated into 
simulation code only partially since generalized 

functions (e.g., external transition function or 
initialization of a model) cannot be stored in a relational 
database in a systematic fashion. The translated 
DEVSJAVA code includes “templates” (place holders) 
which must be completed via SESM editor or an IDE 
environment such as Eclipse. The input/output 
interfaces of atomic and coupled models (input and 
output ports, variables, and types) as well as state 
variables of atomic models are automatically mapped 
into DEVSJAVA simulation code.  

SESM/CM ENVIRONMENT 
A realization of the modeling approach presented in the 
previous section has been developed using Java and 
DBMS technologies. This environment called 
SESM/CM has client-server architecture. As shown in 
Figure 7, a modeler client has multiple views to 
graphically specify template, instance template, and 
instance models stored in a database and managed by a 
server.   In the left-hand frame, there are two tabs: 
Simulatable and Non-Simulatable. The tree 
structures of the Template Model, Instance Template 
Model and Instance Model are available as three tabs 
(TM, ITM, IM) under the Simulatable tab. The Non-
Simulatable tab shows the names of the models. Non-
simulatable models may be stored (and viewed) in 
hierarchical directory structure, but they do not contain 
any modeling relationships as defined for simulatable 
models. The non-simulatable models are not stored in a 
database since they have arbitrary specifications.  

 

Figure 7: SESM/CM Environment 
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In the right panel, modelers can view the block 
representation of the TM, ITM, and IM models. 
Coupling relationships, specification of states (variables 
and types), and ports (port names, variables, and types) 
are supported in this panel. Complexity metrics and 
translation to XML and simulation code are also 
supported in this panel.  

Model components and their ports are displayed in the 
right-hand frame and correspond to the model type 
(e.g., Instance Template Model) in the left panel. Under 
the Operation menu item, template models and instance 
models can be created. Some highlights of the model 
views shown in Figure 7 are described using a simple 
example below.  

Demonstration of the SESM/CM Environment: 
VirusFreeNetwork 
To help illustrate the Scalable Entity Structure Modeler 
with Complexity Metrics environment, we use as our 
example a computer network with the capability to 
detect and remove infected messages. One of the 
models in this system, called VirusFreeNetwork, is 
devised to destroy messages found to be infected. To 
model this and other types of computer networks (e.g., 
VulnerableNetwork), we have defined a set of 
primitive and composite models as shown in Figures 7 
(template models) and 8 (instance template models). 

There are five primitive template models. The 
Processor model's role is to process messages 
generated by the MsgGenr and send them to port out 
of its parent (AntiVirusComputer) if there are no 
messages alerting the processor that specific messages 
may be infected. If Processor receives a message from 
the MsgGenr and received an alert message from the 
VirusMsgGenr, the Processor sends the MsgGenr 
message to the AntiVirusProcessor. 

The AntiVirusComputer determines (e.g., randomly) 
whether or not a message is infected. If it is infected, it 
is sent to the second AntiVirusComputer in the 
TwoStageAntiVirusNetwork for further processing. 
Otherwise, it is sent to the input port inNet of the 
VirusAttackExpSetp via specified couplings. The 
AntiVirusProcessor is specialized into FastAntiVirus 
and SlowAntiVirus where the latter takes more time to 
detect viruses compared to the former (e.g., using 
complex algorithms to detect difficult to find viruses). 
Each of these specialized models is also a primitive 
template model.  

The MsgGenr and the VirusMsgGenr generate (safe, 
infected, and alert) messages for the 

TwoStageAntiVirusNetwork component. The 
Transducer keeps track of the 
TwoStageAntiVirusNetwork and messages generated 
by the MsgGenr and VirusMsgGenr to compute 
statistics such as ratio of safe vs. infected messages or 
percentage of infected messages that were disinfected. 

 

Figure 8: Hierarchical VirusFreeNetwork Instance 
Template Models 

A number of composite instance template models are 
shown in Figure 8. For example, the 
AntiVirusComputer instance template model has 
Processor and AntiVirusProcessor primitive instance 
template models where the latter is specialized into 
FastAntiVirus and SlowAntiVirus template models.   
As shown in Figure 9, the AntiVirusComputer model 
has feed-forward and feedback couplings with external 
input and output couplings. Other composite template 
models such, as FourStageVulnerableNetwork, are 
defined using the primitive and composite template 
models available in the TemplateModel database 
(MBTM).  

Each instance composite instance template models that 
is part of parent model has a multiplicity number. For 
example, in the AntiVirusComputer model, there are 
two instances and shown as AntiVirusComputer [2]. In 
the case of specialization models such as 
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AntiVirusProcess, the multiplicity for the specialized 
models is undefined (shown as FastAntiVirus [u]). 
This is appropriate since the multiplicity is assigned to 
the model and not its specializations. 

 

Figure 9: AntiVirusComputer Composite Instance 
Template Model 

 

Figure 10: Instance Model Snippet for 
TwoStageAntiVirusNetwork 

Figures 9 and 10 are visual representations of an 
instance template and instance models, respectively. 
The AntiVirusProcessor model is a specialized 
model—in creating an instance model, the modeler is 
requested to separate slow and fast types. The 
TwoStageAntiVirusNetwork model is instantiated 
from its instance template model. SESM/CM assigns 
instance model components unique names. As shown, 
the AntiVirusComputer_1_1 and 
AntiVirusComputer_2_2 instance models differ in 
terms of their AntiVirusProcessor primitive models 
(i.e., SlowAntiVirus_0_1 and FastAntiVirus_0_1) 
although they could be identical (see Figure 10). 

Complexity Metrics 
Models specified in SESM/CM can be analyzed in 
terms of their structure. The structures of primitive and 
composite model components differ. We have defined a 
set of structural complexity metrics for instance 
template models to quantitatively determine static 
model complexity. The metrics for the composite 
instance template model VirusFreeNetwork is shown 
in Figure 11. The complexity metrics for primitive 
instance template models are a subset of those for 
composite instance template models. These structural 
complexity metrics offer information before any 
simulation experiments are undertaken. In this regard, 
system and simulation architects and designers can 
evaluate non-behavioral model specifications.  

 

Figure 11: VirusFreeNetwork Structural Metrics  

 

Figure 12: MsgGenr Behavioral Metrics 

In addition, we have defined a set of behavioral 
complexity metrics to complement structural 
complexity metrics. The input, output, and state 
variables of primitive model components show the 
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complexity of input and output message types and 
states (see Figure 12). The number of components, 
ports, etc allows modelers to quantitatively assess the 
complexity of individual primitive components as well 
as their composition. The aggregate metrics for the 
composite components are easy and efficient to 
compute since every primitive and composite model is 
stored in a relational database. 

Model Validation 
A key capability of any modeling methodology is to 
support model validation and simulation verification. A 
modeling environment not only needs to enable model 
specifications, but also facilitate the simulation 
development lifecycle. The SESM/CM framework 
described above supports generic component-based and 
incremental, iterative process for model specification, 
both of which are necessary to simulation modeling of 
contemporary systems. Given the Federation 
Development Process (FEDEP) lifecycle (IEEE 
2003)—consisting of federation objectives formulation, 
conceptual model definition, federation design 
specification, federation integration and testing and 
experimentation)—SESM/CM can be used across all of 
its steps.  In particular, the range of modeling 
capabilities is well suited for conceptual and design 
specifications. Its database feature can support FOM 
model persistence and SOM generation via XML-based 
simulation code generation. Furthermore, the 
framework supports validation and verification not only 
from a behavioral aspect but also provides structural 
aspect (i.e., structural and behavioral metrics depicted 
in Figures 11 and 12, respectively). 

RELATED RESEARCH 
Various approaches have been proposed to represent, 
use, and manage relationships such as has-part and 
kind-of among a set of entities (e.g., models). One such 
approach is known as the System Entity Structure 
(SES) (Zeigler 1984; Rozenblit and Zeigler 1993).  It 
supports decomposition and specialization.  This 
approach supports representing a family of models as a 
labeled tree with attached variable types with a set of 
axioms. The key axioms are uniformity (any two nodes 
which have the same label have identical attached 
variable types and isomorphic sub-trees), strict 
hierarchy (no label appears more than once down any 
path of the tree), alternating mode (each node has a 
mode which is either entity, aspect, or specialization) 
and inheritance (every entity in a specialization inherits 
all the variables, aspects, and specializations from the 

parent of the specialization). The remaining two axioms 
are valid brothers (no two brothers have the same label) 
and attached variables (no two variable types attached 
to the same item have the same name).  

System Entity Structure employs a model base and an 
entity structure base, each of which corresponds to a 
directory-style file system. The model base contains 
primitive (atomic) as well as composite (coupled) 
models. An entity structure is similar to SESM in that it 
contains template models as well as instance models of 
a model base. However, it does not define how to 
distinguish between template and instance template 
models. The consequence is SESM does not use the 
alternating modes to specify a family of models. 
Instead, the Instance Template Model offers a new 
mechanism to model a family of models from template 
models—the key benefit of this simpler approach is its 
ability to handle complex model structures and 
scalability. Furthermore, models in SESM/CM are 
stored in a relational database that supports scalability 
and complexity metrics. Another capability is visual 
modeling.  

In a separate work, a relational algebraic representation 
of SES was developed (Park, Lee et al. 1997). A 
relational database (ESQL/C, a SQL-compliant 
database supporting C language) was developed to 
capture the models. The work presented here is 
significantly different as the SESM/CM modeling 
approach offers new capabilities key for handling large-
scale, complex systems (e.g., complexity and 
behavioral metrics and partial and total mapping of 
primitive and composite models into simulation code). 

Aside from these, there exist UML and supporting 
software engineering tools for modeling. These offer 
specifying has-part and kind-of relationships, but the 
concepts and techniques introduced in SESM do not 
exist in UML and therefore are not supported by any 
software engineering modeling tool. Aside from these 
XML (XML 2005) and its variants offer syntactic 
representation that may be used with the SESM/CM 
specification. 

FUTURE DIRECTIONS 
The SESM modeling approach is generic and thus it is 
important to extend it to support specific domains of 
interest. This approach is especially relevant for 
managing knowledge domains and thus basic 
ingredients of models that exist for challenging 
domains such as wireless network systems, Joint 
Synthetic Battle Space, and supply-chain systems. The 
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capability for domain-specific model specification can 
facilitate application of the proposed approach for real-
world case-studies. 

A promising basic research direction is in extending the 
approach to support other types of model specifications 
such as continuous models, agent models, and observed 
(measured) data sources.  This extends support for 
domain-specific model development. Additional model 
specifications in turn require developing corresponding 
translators for generating simulation code suitable for 
different simulation engines.  

Another area of interest is support for collaborative 
modeling. In this direction, we are extending our work 
for collaborative use. The basic SESM/CM visual 
modeling features (e.g., automatic placement of model 
components in a diagonal layout and couplings with 
minimal crossing) provide scalable workspace for 
building models of real-world systems. The basic 
infrastructure supported by SESM including its 
database, client/server software design, and XML-based 
model translation, supports its extension to a 
collaborative environment.  Finally, Grid Services and 
Service-Oriented Architecture are important 
technologies for further development of SESM/CM that 
could help extend it to industrial strength simulation 
development and testing.   

CONCLUSIONS 
In this paper we proposed a SESM/CM approach for 
developing models for a class of contemporary systems 
where they lend themselves to hierarchical simulation 
model specification. This framework supports 
development of models in a step-wise fashion where 
template models serve as a basis to specify instance 
template and instance models thus offering a new way 
of handling model scalability and complexity. The 
modeling approach enables structural and behavioral 
model specification of models that can be stored in 
databases. Aside from supporting model consistency, 
modelers can evaluate structural traits of their models 
using complexity metrics. Finally, the approach 
provides a basis for model validation via systematic 
model specification of large-scale, complex models and 
automatic translation into simulation code. 
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