
Modeling and Verification of Network-
on-Chip using Constrained-DEVS

Soroosh GholamiSoroosh GholamiSoroosh GholamiSoroosh Gholami

Hessam S. SarjoughianHessam S. SarjoughianHessam S. SarjoughianHessam S. Sarjoughian

School of Computing, Informatics, and Decision Systems Engineering

Arizona Center for Integrative Modeling and Simulation

Arizona State University

Spring Simulation Multi-Conference

April 23-26, 2017

Electronic Complex Systems

• Network/interaction is inherent to electronic complex systems

• Complexity arises from:
• Complexity of individual components

• Functionality of individual components

• Software, hardware, or physical

• Interactions between these components
• Time-sensitive information

• Overall functionality

• Development steps:
• Identifying requirements

• Multiple phases of modeling using variety of methods

• Multiple phases of model validation and verification

• Conversion of models to HW/SW pieces

• Develop communication modules

• System/subsystem validation and verification

• Deployment
2

D
e

sig
n

C
o

n
stru

ctio
n

Complexity and Network-on-Chips

• NoC is a communication system, connecting components of a chip

• NoC design requires
• design of individual components within the network

• design of the communication subsystem and protocols

• SoC as a set of software and hardware components interacting
through NoC

• Switches, Processing Elements, and Network Interfaces communicate
through links

• Integrated Chip design process has three major phases
• Electronic System Level (ESL) Design

• Register Transfer Level (RTL) Design

• Physical Design

3

V&V for NoC Models

• Models evaluation based on requirements

• Verification: building the model correctly

• Validation: building the correct model

• Model complexity should not be sacrificed for the sake of V&V

• Unified framework support is desirable

4

Overview

• Problem Description/Goals

• Background

• Proposed Research

• Approach

• Conclusion and Future Work

5

Limitations of V&V for NoC Design

• Verification is not trivial for DEVS

• DEVS language is undecidable

• It is continuous time

• Simulation is the major means for model evaluation

• Model Evaluation is limited

• Models are repeatedly abstracted for evaluation

• Complex property (compound) expression

• Aspects required to check for them are not even modeled (exclusion of information flow)

• No method to check for them, no language to express them

6

Scope & Goals

• We limit the scope of the problem to:

• Modeling framework: Discrete Event System Specification (DEVS)

• Target system: Network-on-Chip + Processing Element (PE)

• Validation method: Discrete Event Simulation

• Verification method: Model Checking

• Tool: DEVS-Suite1,2

• Goals:

• Extending DEVS modeling with model checking capabilities

• Extending DEVS-Suite with both modeling checking and simulation of constrained-DEVS

7

1 ACIMS, DEVS-Suite Simulator, https://sourceforge.net/projects/devs-suitesim/
2 Kim, Sungung, Hessam S. Sarjoughian, and Vignesh Elamvazhuthi. "DEVS-suite: a simulator supporting visual experimentation design and behavior

monitoring." In Proceedings of the 2009 Spring Simulation Multiconference, Society for Computer Simulation International, 2009.

Elements of Research

8

Support for DEVS Simulation Support for DEVS Simulation Support for DEVS Simulation Support for DEVS Simulation

Support for DEVS model checkingSupport for DEVS model checkingSupport for DEVS model checkingSupport for DEVS model checking

Experimental frameExperimental frameExperimental frameExperimental frame----based evaluationbased evaluationbased evaluationbased evaluation

ConstrainedConstrainedConstrainedConstrained----DEVS Modeling & SimulationDEVS Modeling & SimulationDEVS Modeling & SimulationDEVS Modeling & Simulation

ConstrainedConstrainedConstrainedConstrained----DEVS Model Checking (State exploration)DEVS Model Checking (State exploration)DEVS Model Checking (State exploration)DEVS Model Checking (State exploration)

Timed eventTimed eventTimed eventTimed event----handlinghandlinghandlinghandling

9

Background

Network-on-Chip (1)

• Works as a communication subsystem for SoC

• Design factors

• Topology, routing algorithm, flow control, buffer size, hardware brand, flit size, …

• Major parts:

• Chip Hardware

• The electronic components of the circuit

• Network Software

• The software modules controlling the circuit

• Application Software

• The software running on this base

10

Network-on-Chip (2)

• Similar to combinational logic, parts (or the entire) NoC may
operate independent of a clock signal

• Globally Asynchronous Locally Synchronous (GALS) for large chips

• Clock signal propagation issues

11

• NoC evaluation targets various aspects:

• Performance

• avg. latency, worst case latency, queueing time, network capacity

• Functionality

• deadlock freeness of routing, fairness of arbitration, error correction

• Time

• In time delivery of time sensitive information

• Physical

• Energy consumption, heat generation

Model Checking (1)

• Exhaustively determining whether a model meets certain properties

• Properties are derived from requirements (QoS, safety, liveness, etc.)

• Why? Deciding whether a system meets a certain property is undecidable

• When? For critical systems as a full-proof method of verification

• Issues

• State explosion problem

• The state space rapidly grows in size

• Various methods to manage the size

• Symbolic model checking

• Bounded model checking

• Abstraction

12

Model Checking (2)

• Various formalisms/method are introduced for model checking systems:

• Timed Petri nets

• Timed Automata (and its variations)

• DEVS-based approaches (FD-DEVS, FP-DEVS)

• Major efforts for model checking

• Use abstraction to simplify the model

• Abstracting out information flow in basic Petri net and TA

• Remove stochasticity

• FD-DEVS1 (finite deterministic DEVS)

• Use model conversion

• Conversion to timed automata for RTA-DEVS; model check
using UPPAAL

• Conversion to non-deterministic automata for FD-DEVS;
model check using SPIN/PROMELA

13
1 Hwang, M., and B.P. Zeigler. "Reachability graph of finite and deterministic DEVS networks." IEEE

Transactions on Automation Science and Engineering 6, No. 3 (2009): 468-478.

DEVS M&S (1)

• Parallel DEVS models are made by atomic/coupled models

Atomic DEVS : �, �, �, ���� , �	
� , ���
,	�, ��

14

Input Events

State Set

Output Events

External Transition Function

Internal Transition Function

Output Function

Time Advance Function

Confluent Transition Function

����: Q × X → S		where		Q = s, e 	|	� ∈ �, 0 ≤ " ≤ ��(�) 	
��: S	 → 	&',() 	

DEVS M&S (2)

• Coupled DEVS models define couplings between Atomic/Coupled models

• No behavior (external/internal transition functions or output function) for coupled models

Coupled DEVS : �, �, *, +, , -./, -0/, ./	

15

Input Events

Output Events

Index set

Set of atomic/coupled models

External Input Couplings

External Input Couplings

Internal Couplings1 ∈ *

DEVS M&S (3)

• DEVS Modeling

• Features

• Continuous time, discrete event

• Parallel

• Synchronized time between models

• Reactive

• DEVS Simulation

• Can be conducted in

• Logical time: time is advanced to the most urgent event

• Real-time: simulation time is synchronized with the physical clock

• Various implementations

• eCD++, DEVS-Suite, MS4Me

16

DEVS M&S (4)

• DEVS-Suite

• Model development through coding

• Discrete Event Simulation

• Model visualization, Simulation animation

• Tracking

• Time View (basic types)

• Superdense time

• Add-on libraries

• Real-time simulation

• Network-on-Chip

• Real-time hardware interaction

• RTL DEVS

• EMF-DEVS (Eclipse Modeling Framework)

17H.S. Sarjoughian, S. Sundaramoorthi, 2015, “Superdense Time Trajectories for DEVS Simulation Models”, TMS/DEVS Symposium, Washington DC.

18

Constrained DEVS and Model Checking

Model Checking in DEVS – Example

• DEVS models are not well-suited for model checking

input
output

pop� = {34�56", .17"}
9:;<�

			× =><	?@;
× ℕBCD;EF�< × ℕ>	
,�� × G>H�HH�,

� = 5IJK�, ℕ , JLJ, 1
� = LK�JK�, ℕ

���� .17", =, 6�7K"� 0. . 7 , 5I1"P, ∅ , ", 5IJK�, P 	 = R … , 5I1"P + 1, ∅ 		where	6�7K"� 5I1"P = P		if 	5I1"P < 7	
… , 5I1"P, ∅ 			if 	5I1"P = 7																																																													

���� .17", =, 6�7K"� 0. . 7 , 5I1"P, ∅ , ", JLJ, P = R 34�56", … , 5I1"P − 1, 6�7K"�[5I1"P] 		if 	5I1"P > 0	
.17", … , 5I1"P, ∅ 			if 	5I1"P = 0																																						

�	
� 34�56", =, 6�7K"� 0. . 7 , 5I1"P, JLJJ"1 = 	 .17",∞, 6�7K"� 0. . 7 , 5I1"P, ∅
� 34�56", =, 6�7K"� 0. . 7 , 5I1"P, JLJJ"1 = (LK�JK�, JLJJ"1)

19

Model Checking in DEVS – Shortcomings

• Earlier approaches have certain shortcomings
• Non-determinism and stochasticity

• Stochasticity: randomness in models

• Non-determinism: possibility of multiple states at one instance of time

• Property checking capabilities
• Specific languages for model checking

• Limited expressive power

• Deadlock detection vs. minimum accepted quality of service for specific data

• Data exchange constraints
• Some modeling languages do not support complex data flow

• Such as Petri net and timed automata

• NoC component models requires exchanging complex data types

• How does one verify those models?

20

Model Checking in DEVS – Requirements

• What do we need to make DEVS verifiable (via model checking)?

• Answer:
• Constrain state set and input set values

• Discretize time for input events

• Finite number of internal transitions

• Example:

• Complex data type containing an array of strings (of size 8 holding strings of size 24) and integers
under 10

Array of strings: /[�\]^ B

Numbers: [(1 2 3 4 5 6 7 8 9) 	∈ .I�"f"\]
Entire state space: /[�\]^ B × 1 2 3 4 5 6 7 8 9 																														 /[�\]^ B × [.I�"f"\ < 10]

21

Model Checking in DEVS – NoC

• How the stack model changes?

• Answer:
• No more than 8 numbers in the stack

• Only positive numbers less than 10

• Time resolution for input events (new input or pop) has the granularity of 1 cycle

• How do we leverage this for modeling NoC?

• Data is only limited to flits and flow control signals

• Events can only happen at clock edges

• What is our property checking method?

• We use the experimental frame (EF)

input
output

pop

22

Tool Support

23

DEVS-Suite Extensions

• DEVS-Suite were extended to support

1. Constrained-DEVS modeling

• Base classes for constrained state variables

• Invalid state specification

• Initial state set

• Input/output value sets

2. Constrained-DEVS execution

• State space exploration for model checking mode

• Invalid state reporting for model checking mode

• Parallel DEVS execution for simulation mode

• Model checking engine uses the simulation for state exploration

24

DEVS-Suite State Space Exploration Protocol

• In model checking mode, DEVS-Suite carries out the following steps:

• Initialization

• Model is loaded, state variables are recognized, input ports identified

• Verification Engine and Generator models are is instantiated

• Initial states are put into Unvisited data structure

• Main Loop: take state from Unvisited, set the state of the model

• Nested Loop: apply all combinations of input to the model

• Store resulting states (if not seen before) into the Unvisited

• Add the original state to the Visited data structure

• Continue until Unvisited is empty

• Transducer model(s) stores the trace and verifies properties

25

Verification Engine

Generator

A
d

d
 i

n
it

ia
l

st
a

te
s

1

2 Instantiate Verification Engine and Generator classes

A3
A1

A2

3 4

For every input combination

5

6

Move State to Visited

7

8

If
 e

m
p

ty

Atomic Model Verification

• DEVS-Suite experimentation is based on Experimental Frame (EF)

• Data generation by Generator

• Data collection and analysis by Transducer

27

• Model checking a minimal adaptive
router

• The Generator injects flits and traffic
information

• Transducer collects outgoing flits and verifies
whether the routing decision is correct

Adaptive Router – DEVS Model

28

Coupled Model Verification

• Works similar to the atomic version

• The generator injects data based on the input ports of the coupled model

• The state of the coupled model is the aggregate state of inner models

29

• Model checking a coupled model with two
inner components

• VerifierGenerator injects all combinations of input
values for model1

Analyzing Traces

30

Analyzing Traces

31

Analyzing Traces

32

Analyzing Traces

33

Demo

34

Conclusion & Future Work

35

Conclusion

• Model checking capability

• Constrained-DEVS formalism for model checking

• State exploration algorithm for constrained-DEVS models

• An attempt toward unified design environments

• With support for simulation & model checking

• EF-based experimentation and model evaluation

36

Future Work

• Ongoing

• Hardware-level model library for NoC using Constrained-DEVS

• Integration with multiresolution modeling – the right abstraction is chosen automatically
based on the property which is being verified

• A new version of DEVS-Suite (v 4.0) is scheduled for release by the end of
summer 2017

• Contains the verification engine for Constrained-DEVS models

37

Thank You

