
An AADL-DEVS Framework for Cyber-Physical
Systems Modeling and Simulation Supported with an

Integrated OSATE and DEVS-Suite Tools

Ehsan M. Ahmad
College of Computing and Informatics,

Saudi Electronic University,
Riyadh, Saudi Arabia

Hessam S. Sarjoughian
Arizona Center for Integrative Modeling &

Simulation
School of Computing, Informatics, and Decision

Systems Engineering,
Arizona State University, Tempe, Arizona, USA

March 9, 2020



Contents

1. Introduction 2

2. Background 2

2.1. System-Theoretic Discrete-Event Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1. Atomic DEVS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2. Coupled DEVS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. DEVS-Suite Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3. Architecture Analysis & Design Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. AADL-DEVS Framework 6

3.1. AADL Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1. Structure Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.2. Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2. Behavior Modeling using DEVS Annex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1. Variables Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.2. States Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.3. Behavior Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.4. External Transition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.5. Internal Transition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.6. Output Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.7. Test Input Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3. Code Generation for Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1. Data Classes Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2. Structural Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3. Behavioral Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.4. Code Generation for Composite Components . . . . . . . . . . . . . . . . . . . . . . . . 23

4. A Case Study of Isolette Thermostat System 23

4.1. Manage Regulator Interface Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1. Data Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2. Functional Requirements Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5. Manage Regulator Interface Modeling & Simulation under the AADL-DEVS Framework 26

5.1. Structure and Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1. Manage Interface Failure & Desired Range . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.2. Manage Display Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



5.1.3. Manage Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.4. Manage Regulator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2. Behavior Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1. Manage Interface Failure & Desired Range . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.2. Manage Display Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.3. Manage Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.4. Manage Regulator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3. Code Generation for DEVS Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1. Manage Interface Failure & Desired Range . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.2. Manage Display Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.3. Manage Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.4. Manage Regulator Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Simulation using DEVS-Suite 46

6.1. Atomic Model Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2. Coupled Model Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7. Related Work 47

8. Conclusion and Future Work 48

A DEVS Annex Syntax Card 50

A1. Lexical Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A2. Grammar Productions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2



List of Figures

1 Graphical notation for Atomic and Coupled Models in DEVS-Suite Simulator . . . . . . . . . . . 4

2 Graphical notation for hierarchical modeling in AADL . . . . . . . . . . . . . . . . . . . . . . . 5

3 AADL-DEVS Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 AADL to DEVS Code Generation Engine (ADCoDE) Workflow . . . . . . . . . . . . . . . . . . 14

5 Class diagram for primitive data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Class diagram for compound data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Newly generated class current_speed being used within regulate_speed class . . . . . . . . . . . 18

8 Isolette Context Diagram with Controller (Thermostat) and Physical Environment (Air) . . . . . . 24

9 Regulate Temperature Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10 Manage Regulate Interface AADL model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11 Manage Regulate Interface UML class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12 Manage Regulate Interface Coupled DEVS model . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



List of Tables

1 Complex data type variables used in the Manage Regulator Interface . . . . . . . . . . . . . . . . 25

4



Listings
1 Manage Interface Failure and Desired Range component type . . . . . . . . . . . . . . . . . . . . 27
2 Manage Display Temperature component type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Manage Status component type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 Manage Regulator Interface component type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Manage Interface Failure and Desired Range component implementation . . . . . . . . . . . . . . 31
6 Manage Display Temperature component implementation . . . . . . . . . . . . . . . . . . . . . . 33
7 Manage Status component implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8 Manage Regulate Interface component implementation . . . . . . . . . . . . . . . . . . . . . . . 35
9 Data class generated for lower_desired_temperature . . . . . . . . . . . . . . . . . . . . . . . . . 36
10 Model class generated for thread manage_interfaceFailure_desiredRange with thread implemen-

tation manage_interfaceFailure_desiredRange_impl . . . . . . . . . . . . . . . . . . . . . . . . . 37
11 Data class generated for current_temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12 Model class generated for thread manage_display_temperature with thread implementation man-

age_display_temperature_impl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
13 Model class generated for thread manage_status with thread implementation manage_status_impl 43
14 Model class generated for thread manage_regulator_interface with thread implementation man-

age_regulator_interface_impl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5



Abstract

The continuing rise of complexity in mixed computational and physical systems demands dynamical models
representing structure and behavior together. The software and, more broadly, system architectures are essential
in tackling high-level complexity. System architectures are used to define the structures of components and
their relationships. Architecture specifications focus on the requirements and static aspects of systems. The
specifications detailing the behavioral complexity of the components and their interactions are needed. Design
specifications define how components should react to the external stimuli it may receive over some period of
time. Therefore, the architecture and design specifications serve complementary roles in model-based design and
virtual experimentation.

The Architecture Analysis & Design Language (AADL) and Discrete Event System Specification (DEVS)
are proposed as complementary methods for developing, in a step-wise fashion, architecture and design models.
The proposed AADL-DEVS framework is grounded in the foundational modularity and hierarchy principles that
are common to the DEVS and AADL modeling methods.

A DEVS Annex (DA) is specified according to the DEVS specification for AADL. This annex supports defin-
ing discrete-event component structure and behavior in terms of state transition functions with and without exter-
nal inputs, output functions, and time advance functions. The DA is defined according to the DEVS-Suite simu-
lator which conforms to the parallel DEVS specification. The Open-Source AADL Tool Environment (OSATE)
is extended according to the DEVS-Suite simulator. An implementation of this framework supports translating
AADL-DEVS models to models that can be simulated in the DEVS-Suite simulator. The Eclipse-based AADL-
DEVS framework is developed to afford as much as possible seamless AADL to DEVS model development and
simulation.

The DEVS Annex modeling in OSATE and its simulation in the DEVS-Suite simulator are demonstrated
using a model of an infant incubator, a time-critical and safety-critical system. This system exhibits reactive
computation, concurrency, and feedback control for Cyber-Physical Systems and, more generally, Systems-of-
Systems. The example demonstrates adding basic time-based behaviors to the components of an AADL model of
the infant incubator. The simulation model and its execution are described. Selected related works, future work,
and conclusion are described.

Keywords: AADL, Behavior Modeling, Cyber-Physical Systems, DEVS, DEVS Annex, DEVS-Suite, OSATE,
Safety-Critical Systems

1



1. Introduction

Building Cyber-Physical Systems (CPS) or more broadly Systems-of-Systems (SoS) is challenging, in part, be-
cause of a variety of concepts, methods, frameworks, and tools that are needed to tackle their multifaceted nature
[4, 38, 32]. Models that can be used together architectures and designs are challenging to develop in a seamless
fashion. There are conceptual gaps in connecting, for example, across multiple specification abstractions.

The Architecture Analysis & Design Language (AADL) [9] and Discrete Event System Specification (DEVS) ([37]
provide a foundation for developing specifications that cover and integrate high-level architectural and low-level
design abstractions. That is, a key to the development of the Cyber-Physical Systems and Systems-of-Systems
is to have specifications that can precisely represent decisions spanning both coarse-grain and fine-grain design
needs. The former generally lends itself for characterizing architectures (i.e., components and their relationships)
of systems. The latter supports theoretically grounded specifications for hierarchical component behaviors that
conform to the defined system architecture specifications. This two-step process belonging to the full CPS and
SoS life-cycle development involves combining structures and behaviors at multiple abstraction levels. These ob-
servations highlight the importance of addressing system structure and behavior complexity traits using integrated
architecture and design models.

Grounded in the AADL and DEVS modeling methods, the rest of this report details the proposed and devel-
oped AADL-DEVS framework. Section 2. introduces atomic and coupled DEVS with DEVS-Suite simulator and
AADL with its structure and behavior specification mechanism. Section 3. presents a detailed description of the
proposed AADL-DEVS framework with descriptions of structure and data modeling using core AADL and be-
havior modeling using DEVS annex (DA). An AADL to DEVS CoDe generation Engine (ADCoDE) is described
for automated simulation code for the DEVS-Suite simulator in this section. In Section 4., a case study on infant
incubator (Isolette) system is presented to illustrate the use of the DA sub-language and demonstrate the use of
the proposed AADL-DEVS framework for time- and safety-critical systems. Section 5. describes the modeling of
the Manage Interface Interface component of the Isolette system in the AADL-DEVS framework while Section 6.
describes the simulation of the component in the DEVS-Suite simulator. Section 7. presents a summary of the
related work, and Section 8. summarizes this report.

2. Background

This section presents an overview of the parallel DEVS formalism and the DEVS-Suite simulation framework.
Emphasis is on basic atomic and coupled model specification constructs and their realization and execution in the
DEVS-Suite simulator. Similarly, the basic concepts of the AADL framework and its implementation environment
OSATE are presented. The elemental software and execution aspects of the AADL are highlighted.

2.1. System-Theoretic Discrete-Event Simulation

The Discrete Event System Simulation (DEVS) is generally considered suitable for modeling and simulating sys-
tems [37]. Certain classes of software (e.g., [11]), hardware (e.g., [7]), and mixed software/hardware systems (e.g.,
[23]). As a mathematical formalism, it lends itself for specifying structures and behaviors of Systems of Systems
(SoS) including Cyber-Physical Systems (CPS). This modeling formalism is based on the Systems Theory [35]
where a system is defined in terms of hierarchical modules that are composed through their inputs and outputs.
Models can have communicate arbitrary data types with arbitrary timing and data/event handling. As such, discrete
and continuous dynamical systems as discrete event models. Moreover, DEVS can be used to describe any discrete
event systems [37]. In DEVS, there are two types of model components: atomic model and coupled model.

2.1.1. Atomic DEVS Model

A parallel DEVS atomic model is a mathematical structure as defined below

DEV S = 〈Xb, Y b, S,Q, δext, δint, δcon, λ, ta〉 (1)

where

2



Xb is a set of input port names, each having a bag of values,

Y b is a set of output port names, each having a bag of values,

S is a set of sequential states,

Q is a set of total states {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s), e is the elapsed time},

δext : Q×Xb → S is an external transition function,

δint : S → S is the internal transition function,

δcon : Q×Xb → S is an confluent transition function,

λ : S → Y b is an output function, and

ta : S → <+
0,∞ is a time advance function.

The input and output ports with their values (i.e., primitive or compound messages) are used to specify the exterior
structure of every atomic model. The internal behavior of an atomic model is specified in terms of a set of state
variables and a set of functions. A model can have autonomous and reactive behaviors specified in terms of an
internal transition function and an external transition function, respectively. The output function is for generating
output messages for any number of output ports. The time advance function captures the timing of state transitions.
The confluent function can be used for specifying simultaneous handling of internal and external events. An atomic
model can have multiple input and/or output messages. The elapsed time e has the role of allowing external inputs
to arrive at arbitrary time instances. The ta(s) = 0 allows instantaneous state change which is a basic capability
for modeling concurrent and distributed software/hardware systems.

2.1.2. Coupled DEVS Model

A parallel DEVS coupled model is a mathematical structure as defined below

CM = 〈Xb, Y b, D,Md|d ∈ D,EIC,EOC, IC〉 (2)

where

Xb is a set of input port names, each having a bag of values,

Y b is a set of output port names, each having a bag of values,

D is a set of component names,

Md is a set of basic components for each d ∈ D,

EIC is a set of external input couplings,

EOC is a set of external output couplings, and

IC is a set of internal couplings.

A coupled model is composed of one or more atomic and/or coupled models. The input and output ports and values
have the same specification as the atomic model. The structure specification of a coupled model includes input &
output ports, a set of components, and component coupling information. DEVS can ensure semantically identical
input/output interfaces for atomic and coupled models. The coupling information is categorized as (1) the external
input coupling (EIC) - coupling of coupled model input ports to input ports of some component, (2) the external
output coupling (EOC) - coupling of component output ports to the coupled model output ports, and (3) the internal
coupling (IC) - coupling of component output ports to input ports of components. A coupled model behavior is
based on the message exchanges between itself and its components as well as message exchanges among the com-
ponents (which can be atomic or coupled models), through couplings. The coupling provides interaction between
components. DEVS enjoys the property of closed under coupling where any coupled model can be transformed to
an atomic model with identical behavior. This property supports modeling larger models in a hierarchical manner.
For some purposes, models simulated in real-time, instead of step-wise or logical-time, are needed. For this pur-
pose, the Action-Level Real-Time (ALRT) Discrete-Event System Specification (DEVS) modeling and simulation

3



Fig. 1. Graphical notation for Atomic and Coupled Models in DEVS-Suite Simulator

formalism is developed using real-time Statecharts [26]. The internal and external transition functions for ALRT-
DEVS are defined at the level of actions with time-windows which in turn support fine-grain execution as well as
error handling. Actions are specified to allow execution in real-time under constrained computational resources.
General-purpose DEVS models can be specialized to represent software and hardware types with mapping the
former to the latter [23].

2.2. DEVS-Suite Simulator

The DEVS-Suite simulator is one of the most commonly used modeling and simulation tools for the parallel
DEVS formalism [39, 30, 1]. This simulator has a modeling and simulation engine. The modeling part supports
implementing DEVS atomic and coupled models that have hierarchical tree-structures. The viewableAtomic and
viewableCoupled Java classes allows visualization of the atomic and coupled models (see Figure 1). Both atomic
and coupled models can receive input and send output entities (e.g., job0) only via separate input and output
ports. Entities can strictly be transmitted via couplings between any two distinct models that are at the same level
belonging to a single node in the hierarchy. The entities do not change during transmissions. The simulation part
implements a message-based simulation protocol. It is responsible for executing the internals of atomic models as
well as all entity transmissions among atomic and coupled models.

The simulator is developed following the Model-View-Controller (MVC) architectural style [28]. The Model
conforms to the atomic and coupled model types and supports their simulation using the parallel abstract protocol
[37]. The simulator can execute in logical-time. The internal and external transition functions defined according
to the ALRT-DEVS formalism can be executed in near hard real-time execution. The ALRT-DEVS modeling
and simulation is supported in the Parallel DEVS-Suite simulator. The FaÇade hides specific design choices and
implementations of the atomic and coupled models and the abstract simulator while exposing the data and control
to the Control and View. It facilitates loose coupling from Model to View and Controller. The Control provides
comprehensive means to configure models and their executions including logical and near hard real-time as well
as coordinating run-time simulation animation with timeview trajectories [17, 29, 40]. The View provides unique
capabilities including highly flexible configurations for super-dense time-trajectories and tabular input, state, and
output data which is key for large-scale model development, simulation, and debugging. The open-source simulator
is developed using Java Programming language and the Eclipse BIRT plugin [1].

2.3. Architecture Analysis & Design Language

Architecture Analysis & Design Language (AADL) is an SAE International standard language for the architectural
description of embedded systems. It is a Model-based Engineering (MBE) approach which promotes analyzable
architecture development that enables the dependability prediction of real-time embedded systems. MetaH [34], a
prototype of the AADL, was developed by Steve Vestal at Honeywell with the aims of extensive model validation,

4



Fig. 2. Graphical notation for hierarchical modeling in AADL

better quality system design, and decreased time-to-market for the aerospace industry. MetaH is a proven concept
and have been researched by both academia and industry for more than a decade.

AADL was introduced in 2004 and revised in January 2009. The latest version, AADL V2.0, available as SAE
AS5506C, was revised in August 2017 [15]. AADL has been considered by embedded system designers at Honey-
well, Rockwell Collins, Lockheed Martin, the European Space Agency, Airbus and other safety-critical industries.
An important collaborative System Architecture Virtual Integration (SAVI) project for designing complex dis-
tributed aerospace systems has selected AADL as its architecture description language [10]. SAVI emphasizes an
“Integrate, Then Build” approach—the key concept being to verify virtual integration of architectural components
before implementing their internal designs. AADL supports virtual integration through an effective mechanism
for component contract specification based on interfaces and interactions and through well defined semantics for
extensive formal analysis at different architecture levels.

Architectural modeling in AADL is realized through component specification of both the application software
and the execution platform. Component Type and Implementation classifiers, corresponding to embedded system
entities are instantiated and connected together to form the system architecture model. It supports textual, graphical
and XML Metadata Interchange (XMI) specification formats. Figure 2 depicts hierarchical system modeling in
AADL using graphical notations.

Application software may contain process, data, subprogram, thread, and thread group components. The pro-
cess component represents a protected memory space shared among thread subcomponents. A data component
represents a type, local data subcomponent, or parameter of a subprogram, i.e., callable code. A thread abstracts
sequential control flow. In Figure 2, a composite systemComponent is modeled with two process components,
Process1 and Process2. Two thread components Thread1 and Thread2 are the subcomponents of Process1 while
thread Thread3 is a subcomponent of Process2.

The execution platform is made up of computation and communication resources, consisting of processor, memory,
bus, and device components. The processor represents the hardware and software responsible for thread scheduling
and execution. The memory abstraction is used for describing code and data storage entities. Devices can represent
either physical entities in the external environment, or interactive system components like actuators and sensors.
Physical connections between execution platform components are accomplished via a bus component.

System components represent compound entities containing software, execution platform or other (sub)system
components.

Open Source AADL Tool Environment (OSATE) [31] is an open source platform and toolset built on Eclipse to
implement AADL for the modeling and analysis of real-time embedded systems. OSATE not only provides full-
features text editor and a set of analysis plug-ins, but also supports domain-specific analysis plug-in development.

In order to furnish AADL for DEVS modeling and DEVS-Suite simulation, the core language must be extended
to support continuous time-critical modeling. A DEVS behavioral annex targeted for the DEVS-Suite simulator is
developed [2]. AADL data, structure, and behavior modeling is further detailed in the next section in relation with
the proposed AADL-DEVS framework.

5



Fig. 3. AADL-DEVS Framework

3. AADL-DEVS Framework

This framework is developed by integrating AADL, a semi-formal architecture description language, and DEVS,
a formal discrete-event modeling & simulation language. The result supports both static and dynamic analysis and
design of system architectures for safety and time-critical software-intensive system. The AADL and DEVS are
specification languages where the former can be used to define possible structural system specifications, and the
latter can be used to define combined structural and behavioral system specifications. Each of these languages is
modular and hierarchical that makes their integration simpler. The AADL provides explicit types of abstraction
for software and hardware components (i.e., nodes) and couplings (i.e., connectors). They can be used to define
hybrid system specifications. The DEVS provides general-purpose components (i.e., atomic and coupled models)
without the models having designated software, hardware, and hybrid.

The AADL-DEVS framework has two parts – an Annex sublanguage and a code generator for DEVS modeling and
simulation. First, the AADL with its OSATE realization is extended with an Annex that conforms to the Parallel
DEVS formalism and the DEVS-Suite simulator. This DEVS Annex language is specified in two parts. First, the
structural syntax of atomic and coupled DEVS models are added using the OSATE language. In other words, the
structural syntax in DEVS-Suite is mapped to that of the AADL syntax in OSATE. Second, the behavioral syntax of
the atomic DEVS model is added using the OSATE language. The DEVS Annex structural specification accounts
for the differences between the OSATE and DEVS-Suite different primitive and compound data types with different
syntax declarations. The data types in DEVS-Suite, unlike their counterparts in OSATE, have behavior. In addition,
the DEVS Annex language is extended to support defining the behavior of atomic models (i.e., internal and external
functions) as basic state machines. Other functions that are added to DEVS Annex language are for the output and
time advance functions.

The second part of the integration is for transforming AADL with DEVS Annex to parallel DEVS models. A code
generation engine is developed to transform the AADL-DEVS to atomic and coupled models that can be executed
in the DEVS-Suite simulator. As such, first, the AADL-DEVS models are created in OSATE, and second, the
models are automatically transformed to simulation code for the DEVS-Suite simulator. In order to generate
code for the simulator, it is also necessary to map the input and output primitive and compound data types in
OSATE to their counterparts for the DEVS-Suite simulator. This has required two steps. First, looking from the
DEVS-Suite language to the OSATE language, a set of generic I/O data types in the mold of the I/O data types
are defined in DEVS Annex. Second, looking from the OSATE language to the DEVS-Suite language, the code
generation engine is extended to also transform the DEVS Annex I/O data types to their counterparts defined in
the DEVS-Suite simulator. Using the developed AADL-DEVS framework, specified parallel DEVS models can be
automatically generated, loaded, and executed in the DEVS-Suite simulator. This capability empowers the AADL
structural components to be simulatable.

3.1. AADL Modeling

Due to its extensive support for modeling, the AADL-DEVS framework relies on AADL for modeling capability.
AADL Modeling in AADL-DEVS framework is focused on Structure, Data, and Behavior modeling based on the

6



data and requirements identified in the requirement specification. Below we detail the structural and data modeling
using AADL, while behavior modeling along with the DEVS Annex is described in Section 3.2.

3.1.1. Structure Modeling

In AADL, a structural model of, an embedded system is a hierarchical composition of software and hardware
components. Each component declaration incorporates component type and implementation classifiers to represent
externally visible characteristics and internal realization, respectively. A component type declaration defines the
interface elements and may contain Feature, Flows and Property. Feature normally contains communication ports.
AADL supports Data, Event and Event Data port to transmit data, control and control and data respectively. Port
communication is typed and directional. An in port receives data/control and an out port sends data/control while
an in out port can send and receive data. A component implementation declaration defines the internal structure in
terms of Subcomponents, subcomponent Connections, Subprogram call sequences, Modes, Flow implementations,
and Properties. Ports of a component declared in a type declaration are connected through connections in the
AADL implementation declaration.

Embedded systems are the combinations of both software and hardware required to execute the software. Software
components are mapped onto execution platform components i.e. a thread is mapped to a processor while a data
component can be mapped to a memory component. Multiple implementation classifiers can be associated to one
type classifier of a specific component.

AADL provides support for both static and dynamic architectural modeling. A static architecture contains hi-
erarchical composition of interconnected subcomponents for each containing component. These interconnected
subcomponents form the internal structure of the containing component. Reconfigurable structure specification
of AADL facilitates dynamic architectural modeling. Dynamic architectures are realized through modal behavior
of the system. Modes contain component and connection configuration for different operational as well as error
modes.

In order to support extensive and focused model analysis, AADL core language support extensions through annexes
and properties.

3.1.2. Data Modeling

Data modeling in AADL is accomplished through data components. Domain-specific data types are represented
using the type classifier of a data component and further be detailed in the implementation classifiers. The declared
data types can then be used with ports to represent the kind of data to be transmitted and data sub-components are
declared to represent the data items.

AADL provides Data Modeling Annex with a property set and pre-defined Base_Types to express data modeling
in an architectural setting [14]. This annex defines more than fifteen different properties that can be used with
user-defined data types (specified in terms of data components) to detail domain data element types. For data
representation, the current version of the AADL to DEVS Code Generation Engine (ADCoDE) under the AADL-
DEVS framework not only provides transformation support for primitive data types defined in the Base_Types but
also incorporates three commonly used compound data types. Primitive data types include real, integer, string,
and Boolean. The Data Model Annex also supports Struct for representing compound data types. A Struct has
multiple elements, each of which can be either of primitive or compound data types.

The primitive data types defined in AADL map directly to their counterparts in the Java programming language.
For the compound data type, however, they must be defined as objects that can be operated on. This is because
unlike, AADL Struct, simulatable model components communicate with each other using objects. An example
of an input called job0 is shown in Figure 1. For any AADL compound data type that is to be either input or
output, a class with data and function has to be constructed. Moreover, for any of the AADL primitive data types
that is input and output, classes are also needed. For the AADL-DEVS framework, the existing classes for real,
integer, and string data types are provided in the DEVS-Suite simulator. The Integer_Range (used to represent a
finite range of integer values) and Real_Range (used to represent a finite range of real values) are developed given
their common utility for Safety-Critical Systems. In the DEVS-Suite simulator, all input and output (primitive or
compound) are referred to as entities. For compound data type (e.g., the Isolette data types [24]), their counterparts

7



must be developed (see Section 6.1.). Below is an example of the data component Speed representing the speed of
a train using the Data Modeling Annex.

1 data Speed
2 properties
3 Data_Model::Base_Type => (classifier(Base_Types::Float));
4 Data_Model::Real_Range => 200.0 .. 250.0;
5 Data_Model::Measurement_Unit => "km/h";
6 end Speed;

Here Speed data type is of Float with possible values between 200.0 and 250.0 (a Real_Range) and measuring
unit km/h for kilometer per hour. Further details on ADCoDE are presented in Section 3.3.

3.2. Behavior Modeling using DEVS Annex

This section presents the constructs of the DEVS Annex (DA), an extension to AADL for discrete-event mod-
eling [2]. Each DA section is described in detail with its syntax, and grammar with appropriate examples. The
annex subclause grammar and semantics is based on the Discrete Event System Specification (DEVS) formalism
[37]. This annex brings with it the ability to model detailed behaviors at component level based the concept of
the Atomic DEVS and at system level based on the concept of the Coupled DEVS, where a system is a hierarchical
composition of modular components. In use, the DA subclauses can annotate any of the software and execution
platform components to model the discrete behavior. The DA is expressive enough to model complex monitored
and controlled variables to specify data types for ports and data items communicated through these ports.

The DEVS Annex is implemented as plug-in to an Open Source Architecture Tool Environment (OSATE) [24].
Along with full-features text editor, the OSATE can be extended with analysis plug-ins.

The rest of this section contains the Extended Backus-Naur Form (EBNF) of the DA grammar, in which: literals
are printed in bold; alternatives are separated by a pipe |; groupings are enclosed with parentheses ( ); square braces
[ ] delimit optional elements; and the closures { }+ and { }* are used to signify one-or-more, and zero-or-more of
the enclosed element, respectively. Following is the grammar of the DA subclause:

devs_annex ::=
[ variables { variable_declaration }+ ]
[ states state_declaration ]
[ behavior atomic_behavior_declaration ]

Here, the variables, states, and behavior are the sections of a HA subclause, each of which is dedicated to
specify particular aspect of a detailed behavior model.

The DA subclauses are described in the implementation classifiers

1 annex devs
2 {**
3 ...
4 -- DEVS Annex sections
5 ...
6 **};

where annex is an AADL keyword and devs is the identifier for the DA subclause. Behavior composed of different
devs sections is specified between {** and **}.

8



3.2.1. Variables Section

The local variables in the scope of a DA subclause are declared in the variables section along with their data
types. Data types are assigned to variables by classifier references to the appropriate AADL (user definable) data
components. Each variable must have an initial value specified after =>. Depending on the data type, an initial
value can either be simple (i.e., integer, real, boolean, or string literal) or compound consisting of more than one
simple values separated by commas and enclosed in parenthesis. Following is the grammar of the variables

section:

variable_declaration ::=
variable_identifier :
(variable_type_identifier | data_component_classifier_reference) =>
value_declaration ;

value_declaration ::=
simple_value | compound_value

simple_value ::=
INTEGER_LIT | REAL_LIT | (true | false) | STRING

compound_value ::=
{ ( simple_value , simple_value ) }+

The referred external data component must either be part of the package containing the component being annotated,
or must be declared within the scope of another package that has been imported using the AADL with clause.
Following example shows the use of the variables section to declare different types of variables.

1 ...
2 annex devs {**
3 ...
4 variables
5 speed : Base_Types::Float => 75.0;
6 counter : Base_Type::Integer => 3 ;
7 ct : Iso_Types::Temperature => (98, "Valid");
8 ...
9 **};

Variables speed on line 5 with initial value 75.0, and counter on line 6 with initial value 3 are of type Float and
Integer, respectively, and are defined in a predefined AADL package Base_Types. Data component ct on line 7 is
of type Temperature defined as structure with two elements in another AADL package Iso_Types. Sub-statement
(98, "Valid") specifies initial values for elements of variable ct; first element is of type integer initialized with
98 and second element is of type string initialized with "Valid".

Variables speed and counter are examples of variables with primitive values while ct is an example of a variable
with compound value. Variables can be input or output in which case they must have their counterparts included
in the DEVS-Suite simulator or constructed by the modeler (see Section 3.1.2.).

3.2.2. States Section

All the admissible states of a particular component are defined in the states section. Each state specification
has a name followed by the time advance function stating the time to remain in a particular state before next
transition. States with 0 time advance function allow instantaneous transitions to the new state while states with
INFINITY time advance function model the final state. DA only allows one starting state labeled as initial while
the unlabeled states are considered as transient states. A complete behavior starts from an initial state, suspends in
transient states (with different time advance functions) until next internal or external transition while performing
actions upon each transition, and ends in the final state.

The grammar of the states section is as follows:

state_declaration ::=

9



state_identifier : [ initial ]
( REAL_LIT | INFINITY | variable_identifier ) ;

Following example shows the use of states section to declare different types of constants.

1 ...
2 annex devs {**
3 ...
4 states
5 Start: initial 0.0;
6 Chk_Busy: 3.0;
7 Busy: period;
8 Passive: INFINITY;
9 ...

10 **};

Starting state Start on line 5 is declared as initial and with time advance function 0.0. State Chk_Busy on line 6
is a transient state with time advance function 3.0 indicates that the system will suspend in this state for 3.0 time
units. The system can stay in Busy on line 7 state for period time units. Time variable period is declared in the
variable section not shown here. State Passive on line 8 with time advance function INFINITY specifies a final
state.

3.2.3. Behavior Section

The behavior section of the DA subclause is used to specify the discrete behavior of annotated AADL component
in terms of a state-transition system with three functions and one declaration. The functions deltext and deltint

are used to specify external and internal transitions, respectively. The function outfn specifies the system’s output
based on the change in total state, either due to external or internal state transition. The test inputs for stand-alone
testing are specified using the intest declaration. The time advance function that can specify the time periods for
state transitions (i.e., deltext and deltint functions) is excluded. This decision is made for simplicity and time
period used in the state transition functions are generally as given as values, not computed as functions. All the
identifiers used in this must refer to the declarations defined in their respective sections.

The grammar of the behavior section is as follows.

atomic_behavior_declaration ::=
deltext external_transition_declaration |
deltint internal_transition_declaration |
outfn outfn_declaration |
intest intest_declaration

Below, we explain each of these functions which may constitute a component’s behavior individually or in combi-
nation with other functions.1

3.2.4. External Transition Function

The function deltext is used to model the external transition caused by an input message from a source state. This
external message interrupts system’s behavior moving it to the destination state. The system’s response to external
messages is specified as behavior action and depends on the current state, specific input, and the time elapsed in
current state.

An external message in DA sublanguage is composed of the respective port name, the value received, and a variable
to store this value for future local use. It is important to note that type of the variable must match with data classifier
specified along the port in the type classifier.

1A complete DEVS Annex syntax card with detailed grammar productions are described in Appendix A1.

10



The behavior action in DA sublanguage specifies the activities to be performed upon completion of the external
transition. Current version of the sublanguage uses a string to model these actions and should contain syntactically
correct Java language statements. Extension of the sublanguage to allow common Java constructs is an important
future work in this direction.

Below is the grammar of the deltext.

external_transition_declaration ::=
deltext [ source_state_identifier , message ]->
destination_state_identifier behavior_action

message::=
port_identifier (? | !) variable_identifier ;

behavior_action ::=
{ STRING }

Following example shows the use of deltext function to specify external transitions.

1 ...
2 annex devs {**
3 ...
4 behavior
5 deltext [Active, get?iVar]-> Passive {};
6 deltext [Speed, spin?pVar]-> Busy {
7 " if(pVar > 0 && position < EoA)
8 status = "Valid";
9 else

10 status = "Invalid"; "
11 };
12 ...
13 **};

**** CHECK PAGE Numbering

The function deltext defined on line 5 specifies an external transition with Active as source state. On receiving
an event on get in port, the system behaves as destination state Passive. No behavior action is defined along with
this external transition as indicated by empty braces. External transition function defined on line 6 specifies that
while in the Speed state, if a message is received on spin in port the received value is stored in variable pVar. The
behavior action is composed of an if-else statement and Busy is the destination. Variables iVar, pVar, position,
EoA, and status are defined in the variables section (not shown here) while in ports get, and spin are defined in
type classifier (not shown here) of the respective component.

3.2.5. Internal Transition Function

Function deltint is used to model the internal transition caused by progression of the elapsed time (e) to time
to make transition to the next state (specified as time advance function) ta, when e = ta. Target state identifier
follows the source state identifier and is followed by the behavior action specification. As mentioned earlier,
current version of the sublanguage uses a string to model these actions and should contain syntactically correct
Java language statements.

Below is the grammar of the deltint function.

internal_transition_declaration ::=
deltint [ source_state_identifier ]->
destination_state_identifier behavior_action ;

Following example shows the use of deltint function to specify internal transitions.

1 ...

11



2 annex devs {**
3 ...
4 states
5 Ready: initial 0.0;
6 Busy: period;
7 Passive: INFINITY;
8
9 behavior

10 deltint [Ready]-> Busy {"count=count+1;"};
11 deltint [Busy]-> Passive {};
12 ...
13 **};

Function deltint defined on line 10 specifies an instantaneous (as ta=0.0 on line 5) internal transition from source
state Ready to the destination state Busy state. Behavior action for this transition specifies increment to a count
variable declared in the variables section (not shown here). Function deltint defined on line 11 specifies an
internal transition with Busy source state and Passive as destination state. This transition will occur as soon as the
elapsed time e equals to period (ta for Busy state). Variable period is defined in the variables section which is
not shown here. State Passive on line 7 ta equals to INFINITY is the end state.

3.2.6. Output Function

The ounction outfn is used to model observable outputs. Output messages are only generated on internal tran-
sitions before the state change. If an output is required to be generated on an external transitions, the control
must be moved to a state with ta = 0.0 for output triggering followed by an instantaneous internal transition to
the actual destination state. An output message contains name of the out port followed by ! sign and the data to
be transmitted. Type of the data must comply with the type of the port defined in the type classifier. An outfn

specification may also contain conditional expression to further restrict output generation. A conditional expres-
sion is made up of boolean terms combined using relational operators while the numeric expressions are defined
to specify arithmetic operations ( +, -, *, /, mod) and the power operation (∧).

Below is the grammar of the outfn function.

outfn_declaration ::=
outfn [ source_state_identifier [ , conditional_expression ] ]-> message
behavior_action ;

conditional_expression ::=
boolean_term [ and boolean_term [ and boolean_term ] |
or boolean_term [ or boolean_term ] ]

boolean_term::=
[ not ] [ variable_identifier | [ boolean_expression ] | relation ]

relation::=
( numeric_expression ( ==| !=| >| <| >=| <= ) numeric_expression )

Following example shows the use of outfn function to specify output generation.

1 ...
2 annex devs {**
3 ...
4 behavior
5 outfn [Running,(isValid=true)]-> op!speed {};
6 outfn [Stop]-> op!0.0 {};
7 ...
8 **};

Function outfn defined on line 5 specifies an output function generated from from state Running. The value of
a speed variable is transmitted through output port op whenever the e=ta for state Running and boolean variable
isValid is true. Function outfn on line 6 models the output generation from state Stop. Real value 0.0 is
transmitted through output port op whenever the e=ta for state Stop without any further condition.

12



3.2.7. Test Input Declaration

Declaration intest is used to specify the input to be used for stand alone testing during simulation 2.

It is not part of the DEVS formalism rather used by the DEVS-Suite (the target simulator) for injecting test input for
model components. This input declaration specification contains input port name followed by the value. Simple
values are specified directly and compound values (the one with multiple data items) are parenthesized while
separating data items with commas , and organizing them in order.

intest_declaration ::=
intest [ port_identifier , value_declaration ] ;

Following example shows the use of intest declaration to specify dynamic input usage.

1 ...
2 annex devs {**
3 ...
4 behavior
5 intest [status, true];
6 intest [temperature,(98.0, "Valid")];
7
8 ...
9 **};

The declaration intest on line 5 specifies an input with input port status and the value true. The test input
declaration intest defined on line 6 specifies an input for dynamic application on input port temperature. The
input is expressive enough to have compound inputs. The value to be applied has two data items; the first is of type
real with value 98.0 and the second is of type string with value Valid.

3.3. Code Generation for Simulation

Code generation for DEVS simulation is the third phase of the proposed DEVS-AADL model. As DEVS-Suite,
being one of the most commonly used DEVS modeling and simulation toolset, has been selected for simulation,
this phase is focused on transformation from AADL models with DA specification into DEVS-Suite specifications.

DA is implemented as domain specific language (DSL) for behavior specification that is later to be simulated using
DEVS-Suite simulator. Although structure of the DA sublanguage is based on DEVS theory but DA specifications
are still not executable under DEVS-Suite. For efficient and valid simulation, it is required to generate appropriate
DEVS-Suite code, as Java classes, from DA specifications in each section. To ease complex behavior modeling
DA seamlessly integrates with AADL core language and does not require re-definition of the interface elements
defined in the type classifier of the respective component. Reliance on AADL core language for structural and data
modeling further intensifies the challenge of DEVS-Suite code generation from the DA specifications. To cope
with this challenge, we have implemented ADCoDE—an AADL to DEVS CoDe generation Engine. ADCoDE
is implemented as a plug-in to OSATE and can be activated for an implementation classifier (annotated with DA
specifications) of a particular component selected in Eclipse Outline view. An Xtend file DevsGenerator.xtend
contains the main class with methods responsible for code generation by traversing the type and implementation
classifier of the selected component.

As depicted in Figure 4, upon activation for a particular AADL component with detailed data, structure, and
behavior modeling using DA sublanguage, code generation through ADCoDE is a three step process. Firstly, in
the data classes generation step, appropriate Java classes are generated for primitive and compound data types.
Secondly, in the structural code generation step, structural and interface code for input and output ports is generated
based on the type classifier of the AADL component. Thirdly, in the behavioral code generation, behavioral code
is generated based on the DA specifications in the particular component. All the generated code segments are then
structured to form a ViewableAtomic class ready to be simulated in the DEVS-Suite simulator. Code generation for
one AADL component results in one ViewableAtomic class. All the ViewableAtomic classes generated for several
components in an AADL package are organized in the Model folder while the generated data classes are organized

2The keyword infn, as used in an earlier version of the DEVS Annex introduced in [2], is now replaced with the intest to improve
readability and understanding

13



Fig. 4. AADL to DEVS Code Generation Engine (ADCoDE) Workflow

in a separate folder named same as the AADL package in which the data components are defined. Contents of
all these folders are dynamically updated on any new data or ViewableAtomic class generation. This hierarchical
organization of the generated code not only improves designer’s understanding at the modeling level but also ease
the selection and monitoring of atomic and coupled models during simulation.

ADCoDE also realizes code generation for couple DEVS models. Upon activation for a composite AADL compo-
nent (for example a thread group), a model class extending the ViewableDigraph is generated along with required
data and model classes for each AADL sub-component(thread components). Below we explain three step code-
generation process of the ADCoDE with appropriate examples while code generation for couple DEVS models in
further detailed in Section 3.3.4..

3.3.1. Data Classes Generation

As explained in Section 3.1.2., AADL allows both primitive and compound data types for data modeling, hence
the ADCoDE must also have the capability to map them with respective DEVS-Suite data types. As primitive data
types, pre-defined in the Data Modeling Annex and Base_Types, directly map to the basic data types in DEVS-
Suite, the core of the DEVS-Suite also needs to be extended. Such an extension must be realized via inheriting
from the Entity class as DEVS-Suite only allows transmitting objects (messages sent and received) either Entity or
any of its subclasses.

As noted in Section 2.2., AADL to DEVS transformation requires the AADL data types representing input and
output to be mapped to entity data types. The input and output entities are the events sent and received among
atomic and coupled models.

Figure 5 shows the extension of the Entity class for AADL primitive data types. These classes include the primitive
stringEnt, booleanEnt, intEnt, and doubleEnt data types for their AADL String, Boolean, Integer, Float coun-
terparts. Every class has a private variable v of the respective primitive type. Each class further includes getv(),
and setv() as getter and setter for the private variable v, respectively, and method print() to print and method
copy() to copy current value of variable v. Methods equal() and equals() are to compare an entity and an object
of the respective type while method getName() outputs the name of the object.

Below is an example of the primitive data type Integer declared in the Base_Types (as on line 3) and the corre-
sponding DEVS-Suite code generated by the ADCoDE for a variable pd declared in the variables section of a
DA specification (as on line 11). It is important to note that no new Java class is generated by the ADCoDE for
primitive data types while the corresponding objects of respective subclasses are generated (as on line 15).

1 ...
2 -- Integer data type declaration in Base_Types
3 data Integer
4 properties
5 Data_Model::Data_Representation => Integer;
6 end Integer;
7
8 ...
9 -- Variable declaration in DA specification with Integer data type

14



Fig. 5. Class diagram for primitive data types

Fig. 6. Class diagram for compound data types

15



10 variables
11 pd : Base_Types::Integer => 100;
12
13 ...
14 -- Code generated by ADCoDE for ViewableAtomic class
15 private intEnt pd;
16
17 ...

The core of the DEVS-Suite simulator has also been extended with new classes to incorporate with complex data
types for data modeling. Figure 6 depicts the class diagram showing the Entity class extension for complex data
types. The classes IntRange and DoubleRange are defined for the Integer_Range, and Real_Range datatypes,
respectively. Each of these classes has three private variables; minVal, maxVal, and cVal representing minimum,
maximum, and current values, respectively. For initialization, objects of these classes along with the values for the
variables are automatically extracted from their respective models during code generation. Aside from a default
constructor, there are constructors that can have minVal, maxVal, and cVal as input arguments. Each class includes
getters and setters such as getminVal() for retrieving the minVal variable. The method toString() returns string
representation of the object. The methods equal() and equals() are to compare an entity with its corresponding
object types. For each complex data type used in an AADL component’s type or implementation classifier, a
separate Java class is generated.

Below is an example of a compound data type defined by an AADL data component display_temperature on line
13. As specified on line 6, it is of type Integer_Range with minimum value 68 and maximum value 105. Variable
dt, specified on line 13, is of type display_temperature with initial value 90 and is declared in the variables

section in a particular DA specification. Line 17 shows the corresponding code generated by ADCoDE with dt as
an object of the IntRange class with minimum value 68, and maximum value 105 (extracted from declaration on
line 6), and current value 90 (extracted from the variable declaration on line 13).

1 ...
2 -- Complex data type declaration in package Temp_Types
3 data display_temperature
4 properties
5 Data_Model::Base_Type => (classifier(Base_Types::Integer));
6 Data_Model::Integer_Range => 68 .. 105;
7 Data_Model::Measurement_Unit => "Fahrenheit";
8 end display_temperature;
9

10 ...
11 -- Data type used with a variable in DA specification
12 variables
13 dt : Temp_Types::display_temperature => 90;
14
15 ...
16 -- Code generated by ADCoDE for ViewableAtomic class
17 private IntRange dt = new IntRange(68, 105, 90);
18
19 ...

It is important to note that no new Java class is generated for the user-defined data types based on primitive and
complex data types unless it consists of more than one element e.g., a structure data type.

Below is an example of the structure data type with two elements s of measured_speed_range and status is of
valid_flag as shown on lines 7, 8, and 9. Data type measured_speed_range is a real range (complex data type)
with values between 68.0 to 105.0 as shown on line 15 and measure unit kilo meter per hour specified as km/h.
Data type valid_flag is an enumeration with values Invalid and Valid as shown on line 21. As simulation is
only concerned about the quantities so no code is generated for measuring unit.

All three data components to model respective data types are specified in package Train_Types;

1
2 ...
3 -- Structure data type with two elements declared in package Train_Types
4 data current_speed
5 properties
6 Data_Model::Data_Representation => Struct;

16



7 Data_Model::Elements_Names => ("s", "status");
8 Data_Model::Base_Type => (classifier (Train_Types::measured_speed_range),
9 classifier (Train_Types::valid_flag));

10 end current_speed;
11
12 -- First element measured_speed_range declared in package Train_Types
13 data measured_speed_range
14 properties
15 Data_Model::Base_Type => (classifier(Base_Types::Float));
16 Data_Model::Real_Range => 68.0 .. 105.0;
17 Data_Model::Measurement_Unit => "km/h";
18 end measured_speed_range;
19
20 -- Second element valid_flag declared in package Train_Types
21 data valid_flag
22 properties
23 Data_Model::Data_Representation => Enum;
24 Data_Model::Enumerators => ("Invalid","Valid");
25 end valid_flag;
26
27 ...

ADCoDE generates a new Java class by extending the entity class. This class imports package structureEntities
as the class DoubleRange used with private variable s (on line 8) is defined in it. Values 65.0 and 105.0 are ex-
tracted from the definition as minimum and maximum range values. Private variable Status (on line 9) is declared
as String as AADL enumerations are mapped as Java String for code generation. A default constructor is defined
on line 11 while lines 15, 19, 25, and 32 show the rest of the constructors with their respective parameters. Setters
for the private variables are shown on lines 37 and 51 while the getters are shown on lines 43 and 55. Method
isInRange, as shown on line 47, returns true if the current speed s is in range and false otherwise. It uses
methods getminVal and getmaxVal of the parent DoubleRange class of the purpose.

1 -- New class current_speed generated by ADCoDE
2 package Train_Types;
3
4 import structuredEntities.*;
5
6 public class current_speed extends entity {
7
8 private DoubleRange s = new DoubleRange(68.0, 105.0);
9 private String status;

10
11 public current_speed() {
12
13 }
14
15 public current_speed(double cv) {
16 s.setcVal(cv);
17 }
18
19 public current_speed(double lv, double uv, double cv) {
20 s.setminVal(lv);
21 s.setmaxVal(uv);
22 s.setcVal(cv);
23 }
24
25 public current_speed(double lv, double uv, double cv, String status ) {
26 s.setminVal(lv);
27 s.setmaxVal(uv);
28 s.setcVal(cv);
29 this.status = status;
30 }
31
32 public current_speed(double cv, String status ) {
33 s.setcVal(cv);
34 this.status = status;
35 }
36
37 public void set_s(double lv, double uv, double cv) {
38 s.setminVal(lv);
39 s.setmaxVal(uv);
40 s.setcVal(cv);
41 }
42
43 public DoubleRange get_s() {

17



Fig. 7. Newly generated class current_speed being used within regulate_speed class

44 return s;
45 }
46
47 public Boolean isInRange(double val) {
48 return (val >= s.getminVal() && val <= s.getmaxVal());
49 }
50
51 public void set_status(String status) {
52 this.status = status;
53 }
54
55 public String get_status() {
56 return this.status;
57 }
58 }

Below, variable cs with initial values 100.0 for the first element and "Valid" for the second element is declared
in the variables section of a DA specification (as on line 7). It is worth mentioning here that only value for the
current variable is required for initialization of an integer or real range in a DA specification while the values for
the minimum and maximum range variable are automatically extracted from the data type definition.

1 -- Data type used with a variable in DA specification
2 thread implementation regulate_speed.impl
3 ...
4 annex devs{**
5 ...
6 variables
7 cs: Train_Types::current_speed => (100.0, "Valid");
8
9 ...

10 **}
11 end regulate_speed.impl

This class can be instantiated and used in other classes. Figure 7 depicts one of such examples in which the class
is instantiated as cs in the regulate_speed class with initial values 100 and "Valid". Class regulate_speed is
generated for the thread component as defined above.

3.3.2. Structural Code Generation

Shown in Figure 4, structural code generation is the second phase of code generation through ADCoDE. As ex-
plained in Section 3.1.1. structure of an AADL component is composed of its type and implementation classifier.
Type classifier contains the interfaces of a component while the implementation classifier models the internal re-
alization. When the ADCoDE is activated for a particular component, firstly a ViewableAtomic class is generated

18



to form the structure of the component in DEVS-Suite domain. Secondly, the interface ports specified in the
features section of the type classifier are extracted and their respective in and out ports are added to the View-
ableAtomic class. Data types specified with ports in the type classifier and with variables in the DA specification in
the implementation classifier are generated as explained in Section 3.3.1. to complete structural code generation.

Below is an example of the structural code generation for an AADL component mapping to an atomic component
in DEVS-Suite. Thread manage_speed declared on line 4 has two interface ports; speed in data port (on line 6),
and status out data port (on line 7). As shown on line 15, a subclass of the ViewableAtomic class is generated to
model the structure of an AADL component (thread manage_thread in this case). The code generated for in and
out data ports are specified on line 18 and 19.

1
2 ...
3 -- Interface declaration in an AADL thread component
4 thread manage_speed
5 features
6 speed : in data port Train_Types::current_speed;
7 status : out data port Base_Types::Boolean;
8 ...
9

10 end manage_speed;
11 ...
12
13 -- Code generated by ADCoDE for ViewableAtomic class
14 ...
15 public class manage_speed extends ViewableAtomic {
16 ...
17
18 addInport("speed");
19 addOutport("status");
20
21 ...
22
23 }

In AADL, the structure of a composite component is formed through the port definitions in the features section
of the type classifier, and sub-component definitions in subcomponents section and connections among the ports
of the sub-components (and the composite component itself) in the connections section of the implementation
classifier. Sub-components are instances of the pre-defined implementations to exploit design alternatives.

Upon activation for a composite AADL component (for example a thread group), ADCoDE also generates code
to realize couple DEVS models. Firstly, exploring through the subcomponents section, required data and atomic
model classes are generated for each AADL sub-component(for example thread sub-components). Then a model
class extending the ViewableDigraph class is generated along with set of sub-components instantiated based on
the information from the subcomponents section and already generated atomic model classes. The code for the
input and output ports of the composite component are generated based on the input and output ports of all the
sub-components. The test inputs for stand-alone testing are generated based on the intest declarations (further
explained in Section 3.3.3.) of the sub-components specified in their DA specifications. The DA relies on the
AADL to ensure semantically identical input/output interfaces for atomic and coupled models.

Code generation for the required coupling categories in any composite AADL component is based on its port con-
nection specifications in the connections. Th external input coupling (EIC) is realized based on the connections
of the composite component’s input ports with the input ports of its sub-components. The external output coupling
(EOC) is realized based on the connections of the sub-components’ output ports to the composite component’s
output ports, while the internal coupling (IC) is realized based on the sub-components’ output ports to the input
ports of other sub-components.

Code generation for composite AADL models, in relation with the case study, is further explained in Section 5.3.

3.3.3. Behavioral Code Generation

In the AADL-DEVS framework, introduced in Section 3.2., the behavior for an AADL component is modeled in
the DEVS Annex (DA). The sections of a DA subclause for the implementation classifier of a component are used
to specify different aspects of a component’s behavior. Dynamic code generation is primarily based on the external,

19



internal, output, and test input functions specified in the behavior section of a DA subclause. Hence, no explicit
code is generated for the states section needed for the outfn function as well as the time period required for the
deltext and deltint functions. Below we explain code generation for the variables section and the functions
used in the behavior section of a DA subclause.

Variables section: A local variable defined in the variables section has a data type and initial value. Data types
are the classifier references to the appropriate AADL (user definable) data components. Code generation for a
variable in the DA subclause is based on mapping it to an object of the class generated for the data type. Primitive
data types String, Boolean, Integer, Float are mapped with stringEnt, booleanEnt, intEnt, and doubleEnt.
Variables with compound data types are mapped to the objects of the newly generated classes based on their data
types (as explained in Section 3.3.1.).

Below is an example of code generation for variables section. Variable temp defined on line 6 is of type
current_temperature specified in another package User_Types. The initial value of the temp variable indicates
that the associated data type has two elements; a real to be initialized to 96.0 and a string to be initialized to
"Valid". The required classes (not specified here) for both of these elements are generated as explained for data
classes generation. The variable counter defined on line 7 is of primitive type Integer initialized to 10.

Code generated by the ADCoDE for the variable temp is specified on line 14. It is an object of a newly generated
class current_temperature which itself extends the DoubleRange class defined to extend DEVS-Suite for real
ranges. Class current_temperature (not shown here) is generated based on the definition of the current_temperature
data component specified in the package User_Types.

Code generated by the ADCoDE for variable counter is specified on line 15 as an object of the class intEnt with
the initial value 10. No need to generate any new class as the variable is of primitive type.

1 ...
2 annex devs {**
3 ...
4 -- variable declaration in a DA subclause
5 variables
6 temp : User_Types::current_temperature => (96.0, "Valid");
7 counter : Base_Types::Integer => 10;
8 ...
9

10 **};
11
12 -- Code generated by ADCoDE for variables
13 ...
14 private current_temperature temp = new current_temperature(96.0, "Valid");
15 private intEnt counter = new intEnt(10);
16
17 ...

Function deltext: Function deltext models the external transition and is composed of a port name, the value
received, and a variable to store this value. Currently, the behavior action to be performed upon completion of the
external transition is modeled as a String. External transitions in DEVS-Suite are realized through a public method
deltext which accepts an object of the message class defined in the DEVS-Suite. As messages are implemented
as bags so method messageOnPort is used to explore the bag to find a message received on a particular port at a
particular time and then the required behavior actions are executed accordingly.

Code generation for deltext function specified in a DA subclause is based on combining all its occurrences using
a control structure supported by the Java language. For a particular occurrence, the source state is identified and
is used in a method phaseIs to structure the control. Method messageOnPort is then used to explore the message
bag on the particular in port specified in the function. The String containing the behavior action is then added as
it is. The destination state and its time advance function extracted from the states section are used in the holdIn
function to set the next state and time advance function for this state.

Below is an example of code generation for a deltext function. Function defined on line 6 has Start as source
state Stop as destination state. It receives a message on iPort and stores it in variable ct which is declared in the

20



variables section (not shown here). Behavior action for this function is specified on line 7. It sets the value of a
variable valid based on the value of the variable acquired using ct.getv() method.

1 ...
2 annex devs {**
3 ...
4 -- behavior section in a DA subclause
5 behavior
6 deltext [ Start, iPort?ct ]-> Stop {
7 " if(ct.getv() >= 96 && ct.getv() <= 99 )
8 valid = true;
9 else

10 valid = false; "
11 };
12
13 ...
14
15 **};
16
17 -- Code generated by ADCoDE for deltext function
18 ...
19 public void deltext (double e, message x){
20 Continue(e);
21
22 if (phaseIs("Start")) {
23 for(int i=0; i<x.getLength(); i++) {
24 if(messageOnPort(x, "iPort", i)) {
25 ct = (current_temperature) x.getValOnPort ("iPort",i);
26 if(ct.getv() >= 96 && ct.getv() <= 99 )
27 valid = true;
28 else
29 valid = false;
30 holdIn("Stop",pd);
31 }
32 }
33 }
34 }

Corresponding DEVS-Suite deltext method, generated by the ADCoDE, is specified on line 19. The Continue(e)
statement on line 20 is used to reflect the passage of elapsed time (e). Line 22 contains the control structure defined
for the function. As there is only one occurrence of the deltext function in DA subclause, so the control structure
only contains an if statement with phaseIs("Start") marking the source state. For loop specified on line 23
explores the bag of messages and uses messageOnPort method, specified on line 24, to confirm if the message is
received on iPort in port. Code generated for behavior action is specified on line 26 and is same as specified in
the model on line 7. Method holdIn on line 30 specifies the next system state with destination state Stop and its
time advance function pd. States and variables are defined in their respective sections.

Function deltint: Function deltint models the internal transition with source and destination states followed by
the behavior action. Internal transition happens when elapsed time (e) progresses and reaches to the time advance
function (ta), when e = ta). Internal transitions in DEVS-Suite are realized through a public method deltint.

Code generation for a deltint function is based on combining all its occurrences using a control structure sup-
ported the Java language. For each occurrence, the source state is then identified and used in the method phaseIs
for controlling the change in the state of the model. The string containing the behavior action is then added as it is.
The destination state and its time to next event (i.e., sigma) are extracted from the states section and used in the
holdIn function.

Below is an example of a generated code for the deltint section. The function defined on line 6 has Start as
source state and Set_Values as destination state. No other actions are specified for this internal transition function.

1 ...
2 annex devs {**
3 ...
4 -- behavior section in a DA subclause
5 behavior
6 deltint [ Start ]-> Set_Values {} ;
7

21



8 ...
9

10 **};
11
12 -- Code generated by ADCoDE for deltint function
13 ...
14 public void deltint (){
15 if (phaseIs("Start"))
16 holdIn("Set_Values", p);
17 }

The DEVS-Suite deltint method, generated by the ADCoDE, is specified on line 14. Line 15 contains the if

control statement. As there is only one occurrence of the deltint function in DA subclause, so the control structure
is quite simple with only if statement having phaseIs("Start"). The method holdIn on line 16 specifies the next
system state with destination state Set_Values and its time advance function p.

Function outfn: The function outfn is used to model observable outputs generated prior to the internal tran-
sition execution. The output messages are transmitted through named out ports. This output generation can be
further restricted through conditional expressions. Output functions in DEVS-Suite are realized through a public
method out which returns an object of the message class. DEVS-Suite only allows objects of the entity class or
its subclasses to be transmitted, method makeContent is used to setup the contents to be communicated through a
specific port. [] Code generation for an outfn function is based on combining all its occurrences using any control
structure supported in the Java language. For a particular occurrence, the source state is identified and used in the
method phaseIs. The conditional statement, if present, is then used to further constraint the output generation. The
method add of the message class is then used to extend the message bag with this new message set by the method
makeContent.

Below is an example of code generation for outfn section. Function defined on line 6 has Set_Values as source
state. It models the behavior that if condition expression valid == true holds then value of the variable ct will
be transmitted through oPort out port.

1 ...
2 annex devs {**
3 ...
4 -- behavior section in a DA subclause
5 behavior
6 outfn [Set_Values, (valid == true)]-> oPort!ct {};
7
8 ...
9

10 **};
11
12 -- Code generated by ADCoDE for outfn function
13 ...
14 public message out(){
15 message m = new message();
16 if (phaseIs("Set_Values"))
17 if(valid == true)
18 m.add(makeContent("oPort", ct.getv()));
19 return m;
20 }

The DEVS-Suite out method, generated by the ADCoDE, is specified on line 14. A new object of the message
is created as specified on line 15. As there is only one occurrence of the outfn function in DA subclause, so the
control structure only contains an if statement with phaseIs("Set_Values") marking the source state. Line 17
contains the conditional expression extracted from the model while the content of the message set for oPort with
ct.getv() (assuming that variable ct is of type intEnt) are added through add method, as specified on line 18.

Declaration intest: Although, not being part of the standard DEVS, declaration intest is used by the DEVS-
Suite (the target simulator) for dynamic input provision for model components with input port name and the value.
Input functions in DEVS-Suite are realized through a public method addTestInput which gets name of the port
and the value to be to used as input.

22



Code generation for an intest declaration is based on generating an addTestInput method with respective in
ports and the data value. Simple input values are specified as it is but the complex values are instantiated and the
objects are included in the function.

Below is an example of code generation for intest section. Declaration defined on line 6 has iPort as input port
and the value to be injected is "Valid".

1 ...
2 annex devs {**
3 ...
4 -- behavior section in a DA subclause
5 behavior
6 intest [iPort, "Valid"];
7
8 ...
9

10 **};
11
12 -- Code generated by ADCoDE for intest function
13 ...
14 addTestInput("iPort", new stringEnt("Valid"));
15
16 ...

Method addTestInput, generated by the ADCoDE, is specified on line 14. Name of the input port iPort is
extracted and added. For value, a new object of the stringEnt class is created with the given value "Valid".
During simulation, this value will now be available for stand alone testing.

3.3.4. Code Generation for Composite Components

In AADL, the structure of a composite model is formed through the port definition in the features section of the
type classifier, and sub-component definitions in subcomponents section and connections among the ports of the
sub-components (and the composite component itself) in the connections section of the implementation classifier.
Sub-components are instances of the pre-defined implementations to exploit design alternatives.

Upon activation for a composite AADL component (for example a thread group), ADCoDE also generates code
to realize coupled DEVS models. Firstly, exploring through the subcomponents section, required data and atomic
model classes are generated for each AADL sub-component(for example thread sub-components). Then a model
class extending the ViewableDigraph class is generated along with set of sub-components instantiated based on the
information from the subcomponents section and already generated atomic model classes. Input and output ports of
the composite component are generated based on the input and output ports of all the sub-components, respectively.
Test inputs for stand-alone testing are generated based on the intest declarations of the sub-components specified
in the their DA specifications. DA relies on AADL to ensure semantically identical input/output interfaces for
atomic and coupled models.

Code generation to realize required coupling categories is based on the port connection specifications in the
connections section of composite components. The external input coupling (EIC) is realized based on the con-
nections of the composite component in ports with in ports of some sub-component. The external output coupling
(EOC) is realized based on the connections of sub-component output ports to the composite model output ports,
while the internal coupling (IC) is realized based on the sub-component output ports to the in ports of other sub-
components.

Code generation for composite AADL models, in relation with the case study, is further explained in Section 5.3.

4. A Case Study of Isolette Thermostat System

In order to demonstrate application of the AADL-DEVS framework for complex and highly integrated time-critical
and safety-critical systems, this section presents a case study of the Isolette system, an infant incubator described
in the Requirement Engineering Management Handbook (REMH) published by Federal Aviation Administration
(FAA) in 2009 [21]. This specification is simple enough to grasp, yet rich enough to highlight the need for our
proposed framework. We use it to show all four phases of the proposed AADL-DEVS framework; Requirements

23



Fig. 8. Isolette Context Diagram with Controller (Thermostat) and Physical Environment (Air)

Specification, AADL Modeling, Code Generation for DEVS Simulation, and Simulation using DEVS-Suite Simu-
lator. The Isolette example has previously been used to introduce important research efforts, and to advocate for
AADL-based development as well as new annexes. We have previously used it to introduce Hybrid Annex for
continuous behavior and cyber-physical interaction modeling [3]. Blouin has used it to illustrate the Requirements
Annex [5], and Larson to explain detailed behavior modeling with the BLESS Annex, and to demonstrate hazard
analysis techniques using the Error Model Annex(v.2) [19].

Figure 8 depicts operational context of the Isolette system to maintain temperature of the Air within the desired
range set by the Nurse using Operator Interface. The Thermostat monitors the Air temperature through the Tem-
perature Sensor, and attempts to manipulate it with the Heat Source actuator. The control strategy followed by the
Thermostat, is derived from a process model that is implicit in the interpretations it gives to the current Air infor-
mation coming from the sensor, and the commands it has issued to the actuator. In this study, we focus on modeling
and simulation of the behavior of the Thermostat, and its interactions with the Heat Source and Temperature Sensor
units. The internals of the Operator Interface and continuous behavior of the Air are not considered.

To keep current temperature within the desired range, Thermostat performs two major functions; i) Monitor Tem-
perature, and ii) Regulator Temperature. Monitor Temperature function receives Current Temperature from the
Temperature Sensor, and Desired Alarm Range from the Nurse through Operator Interface. It then turns on or off
the Alarm Control if the Current Temperature ascends or descends beyond the Desired Alarm Range.

The Regulate Temperature function receives current temperature from the Temperature Sensor, and Desired Tem-
perature Range from the Nurse through Operator Interface. It then turns on or off the Heat Source to maintain
the Current Temperature within the Desired Temperature Range. The key requirements are to set value for the
Heat Control, Regulator Status, and Display Temperature controlled variables. As depicted in Figure 9 Regulate
Temperature function consists of following four subfunctions;

• Manage Regulator Interface: Obtains the Desired Temperature Range from the Operator Interface and
reports back the Regulator Status and the Display Temperature.

• Manage Regulator Mode: gets status of Regulator Interface Failure from Manage Regulator Interface to
determine Mod of the Regulate Temperature function

• Manage Heat Source: turns on and off the Heat Source

• Detect Regulator Failure: sets value of the Regulate Temperature Failure variable to reveal the internal
failure

What follows are details of the data and functional requirements of the Manage Regulator Interface function as

24



Fig. 9. Regulate Temperature Function

Table 1. Complex data type variables used in the Manage Regulator Interface

Name Type Range Description

Current Temperature Real [68.0 .. 105.0] Current air temperature inside IsoletteStatus Invalid, Valid

Regulator Mode Enum
Init Initializing following power-up
NORMAL Normal mode of operation
FAILED Internal failure detected

Regulator Status Enum
Init

Status of the Thermostat Regulator FunctionOn
Failed

Lower Desired Temperature Integer [97.. 99] Lower value of Desired TemperatureStatus Invalid, Valid

Upper Desired Temperature Integer [98.. 100] Upper value of Desired TemperatureStatus Invalid, Valid
Lower Desired Temp Integer [96 .. 1021 Lower value of desired range
Upper Desired Temp Integer [97 .. 102] Upper value of desired range
Display Temperature Integer [68 .. 105] Displayed temperature of Isolette

specified in Section A.5.1.1 of the REMH while architectural modeling & simulation of the same subfunctions is
described in Section 5. to demonstrate the practicality of AADL-DEVS framework 3.

4.1. Manage Regulator Interface Function

4.1.1. Data Specification

The definitions for primitive and complex variable types in AADL and Java (and thus DEVS-Suite) share some
concepts, but also have differences.

Regulator Interface Failure, indicating operator failure, is of type Boolean and is the only primitive data type
variable used in Manage Regulator Interface function.

Table 1 specifies compound data type variables used in Manage Regulator Interface function.

3Complete AADL models with detailed behavior specified using DEVS Annex, corresponding java classes automatically generated using
ADCoDE tool, and the DEVS-Suite simulation results are available at https://github.com/ehah/AADL-DEVS-Framework

25



4.1.2. Functional Requirements Specification

The Manage Regulator Interface function requires Desired Range in terms of Lower Desired Temperature and
Upper Desired Temperature from Operator Interface and manipulates following controlled and internal variables;

Regulator Status: Controlled variable Regulator Status is dependant on Regulator Mode received
from Manage Regulator Mode subfunction and is set based on the following requirements;

REQ-MRI-1: If the Regulator Mode is INIT, the Regulator Status shall be set to Init.

REQ-MRI-2: If the Regulator Mode is NORMAL, the Regulator Status shall be set to On.

REQ-MRI-3: If the Regulator Mode is FAILED, the Regulator Status shall be set to Failed.

Display Temperature: Controlled variable Display Temperature also depends on Regulator Mode. It
is the rounded value of the Current Temperature within the accuracy of 0.6◦F based on the following
requirements;

REQ-MRI-4: If the Regulator Mode is NORMAL, the Display Temperature shall be set to the value
of the Current Temperature rounded to the nearest integer.

REQ-MRI-5: If the Regulator Mode is not NORMAL, the value of the Display Temperature is UN-
SPECIFIED.

Regulator Interface Failure: Variable Regulator Failure indicates internal error depending on the
status of the Lower and Upper Desired Temperature as follows;

REQ-MRI-6: If the Status attribute of the Lower Desired Temperature or the Upper Desired Tem-
perature is Invalid, the Regulator Interface Failure shall be set to True.

REQ-MRI-7: If the Status attribute of the Lower Desired Temperature and the Upper Desired
Temperature is Valid, the Regulator Interface Failure shall be set to False.

Desired Range: Depending on the Regulator Interface Failure, internal variable Desired Range is set
as follows;

REQ-MRI-8: If the Regulator Interface Failure is False, the Desired Range shall be set to the
Desired Temperature Range.

REQ-MRI-9: If the Regulator Interface Failure is True, the Desired Range is UNSPECIFIED.

5. Manage Regulator Interface Modeling & Simulation under the AADL-DEVS Frame-
work

This section is dedicated for modeling and simulation of the Manage Regulator Interface function with the data and
requirements specification described in Section 4.1.. An AADL model for the Manage Regulator Interface is used
to demonstrate the use of the proposed AADL-DEVS framework where AADL models of a safety-critical system
are developed using the DEVS Annex and then transformed to executable code for the DEVS-Suite simulator. The
AADL described below uses snippets from the BLESS [18] annex model.

26



Fig. 10. Manage Regulate Interface AADL model

5.1. Structure and Data Modeling

Figure 10 depicts architectural model of the composite component Manage Regulator Interface function using
AADL graphical notations. Based on the functional requirements to be considered to set controlled and internal
variables, the architectural model consists of the following three thread and one thread group components;

5.1.1. Manage Interface Failure & Desired Range

As internal variable Desired Range is directly related to the internal variable Regulator Interface Failure, they are
modeled using a single AADL thread manage_interfaceFailure_desiredRange. The type classifier of Listing 1
declares the interface of this thread component.

Listing 1: Manage Interface Failure and Desired Range component type� �
thread manage_interfaceFailure_desiredRange

features
lower_desired_temperature : in data port Iso_Types::lower_desired_temperature;
upper_desired_temperature : in data port Iso_Types::upper_desired_temperature;
regulator_interface_failure : out data port Base_Types::Boolean;
lower_desired_temp : out data port Iso_Types::lower_desired_temp;
upper_desired_temp : out data port Iso_Types::upper_desired_temp;
unspecified_temp : out data port Iso_Types::unspecified_value;

properties
Dispatch_Protocol => Periodic;
Period =>100 ms;

end manage_interfaceFailure_desiredRange;� �
The lower_desired_temperature and upper_desired_temperature in data ports are used to get the lower and
upper values of the desired temperature, respectively. Data types for these in data ports are defined within the
scope of another package Iso_Types that has been imported using the AADL with clause. As specified in Table 1,
Lower and Upper Desired Temperature are compound variables with two data items; one of type Integer range to
represent the current temperature while the other is of type Enumeration to represent the status of the respective
temperature value. Within the scope of Iso_Types, these data types are modeled as follows;

1
2 --Lower Desired Temperature, "t" is temperature range, "status" is the valid/invalid flag
3 data lower_desired_temperature
4 properties
5 Data_Model::Data_Representation => Struct;
6 Data_Model::Element_Names => ("t", "status");
7 Data_Model::Base_Type => (classifier (Iso_Types::lower_desired_range),
8 classifier(Iso_Types::valid_flag));
9 end lower_desired_temperature;

10

27



11 data lower_desired_range
12 properties
13 Data_Model::Base_Type => (classifier(Base_Types::Integer));
14 Data_Model::Integer_Range => 97 .. 99;
15 Data_Model::Measurement_Unit => "Fahrenheit";
16 end lower_desired_range;
17
18 --Upper Desired Temperature, "t" is temperature range, "status" is the valid/invalid flag
19 data upper_desired_temperature
20 properties
21 Data_Model::Data_Representation => Struct;
22 Data_Model::Element_Names => ("t", "status");
23 Data_Model::Base_Type => (classifier (Iso_Types::upper_desired_range),
24 classifier(Iso_Types::valid_flag));
25 end upper_desired_temperature;
26
27 data upper_desired_range
28 properties
29 Data_Model::Base_Type => (classifier(Base_Types::Integer));
30 Data_Model::Integer_Range => 98 .. 100;
31 Data_Model::Measurement_Unit => "Fahrenheit";
32 end upper_desired_range;
33
34 data valid_flag
35 properties
36 Data_Model::Data_Representation => Enum;
37 Data_Model::Enumerators => ("Invalid","Valid");
38 end valid_flag;

Data component lower_desired_temperature on line 3 models the Lower Desired Temperature as a structure
with two elements; t to represent the temperature value, and status to represent the status value. The first element
t is of type lower_desired_range defined on line 11 which is an integer range from 97..99 with measuring unit
Fahrenheit. The second element status is of type valid_flag defined on line 34 as Enum with values Invalid

and Valid.

Data component upper_desired_temperature on line 19 models the Upper Desired Temperature as a structure
with two elements; t to represent the temperature value, and status to represent the status value. The first element
t is of type upper_desired_range defined on line 27 which is an integer range from 98..100 with measuring unit
Fahrenheit. The second element status is of type valid_flag defined on line 34 as Enum with values Invalid

and Valid. All the properties for both these data types are defined using Data Model annex which is an AADL
extension to facilitate detailed data modeling.

Out data port regulator_interface_failure, specified in Listing 1, is of type Boolean which is specified in the
scope of another package Base_Types. It is defined to communicate true or false based the status of the Upper and
Lower Desired Temperature as specified in requirements REQ-MRI-6 and REQ-MRI-7. In the properties section,
manage_interfaceFailure_desiredRange is declared as a periodic thread with period of 100 ms.

Listing 2: Manage Display Temperature component type� �
thread manage_display_temperature

features
regulator_mode: in data port Iso_Types::regulator_mode;
current_temperature: in data port Iso_Types::current_temperature;
display_temperature: out data port Iso_Types::display_temperature;
unspecified_temp : out data port Iso_Types::unspecified_value;

properties
Dispatch_protocol => Periodic;
Period => 100 ms;-- Iso_Types::Thread_Period;

end manage_display_temperature;� �
5.1.2. Manage Display Temperature

The type classifier of Listing 2 declares the interface of the manage_display_temperature thread component.

The regulator_mode in port is used to get regulator mode from the Manage Regulator Mode function, modeling

28



of which is not part of this study. It receives data of type regulator_mode defined in the scope of Iso_Types as
follows:

1
2 data regulator_mode
3 properties
4 Data_Model::Data_Representation => Enum;
5 Data_Model::Enumerators => ("Init", "NORMAL", "FAILED");
6 end regulator_mode;

Data component regulator_mode models Regulator Mode, as specified in Table 1, as Enum with values Init,
NORMAL, FAILED.

In Listings 2 in data port current_temperature is used to receive the value of type temperature which modeled as
below;

1 data current_temperature
2 properties
3 Data_Model::Data_Representation => Struct;
4 Data_Model::Element_Names => ("t", "status");
5 Data_Model::Base_Type => (classifier (Iso_Types::measured_temperature_range),
6 classifier(Iso_Types::valid_flag));
7 end current_temperature;
8
9 data measured_temperature_range

10 properties
11 Data_Model::Base_Type => (classifier(Base_Types::Float));
12 Data_Model::Real_Range => 68.0 .. 105.0;
13 Data_Model::Measurement_Unit => "Fahrenheit";
14 end measured_temperature_range;

Data component current_temperature on line 1 models the Current Temperature as a structure with two elements;
t to represent the temperature value, and status to represent the status value. The first element t is of type
measured_range defined on line 9 which is a real range from 68.0..105.0 with measuring unit Fahrenheit. The
second element status is of type valid_flag which is same as previously modeled for Upper and Lower Desired
Temperature variables.

Out data port display_temperature in Listing 2 is used to transmit the value of the temperature to be displayed.
As temperature is displayed as rounded value of the Current Temperature, display_temperature data type is
modeled as below;

1 data display_temperature
2 properties
3 Data_Model::Base_Type => (classifier(Base_Types::Integer));
4 Data_Model::Integer_Range => 68 .. 105;
5 Data_Model::Measurement_Unit => "Fahrenheit";
6 end display_temperature;

Data component display_temperature models the Display Temperature as an integer range with values between
68 and 105 as specified on line 4. The measuring unit is Fahrenheit. As display_temperature data type is only
used for displaying the current temperature and there is no validity associated with it so element valid flag is not
part to this data type. In order to realize REQ-MRI-5, unspecified_temp is defined as an out data port in Listing 2
to transmit a string "UNSPECIFIED" if Regulator Mode is Normal and nothing otherwise.

5.1.3. Manage Status

The type classifier of Listing 3 declares the interface of the manage_status thread component.

29



Listing 3: Manage Status component type� �
thread manage_status

features
regulator_mode: in data port Iso_Types::regulator_mode;
regulator_status: out data port Iso_Types::regulator_status;

properties
Dispatch_protocol => Periodic;
Period => 100 ms;

end manage_status;� �
The regulator_mode in data port is used to receive Regulator Mode. The data type for this port is the same as
specifies in Section 5.1.2.. The regular_status out data port transmits newly computed Regulator Status bases on
REQ-MRI-1, REQ-MRI-2, and REQ-MRI-3. Based on the specification in Table 1, data type regulator_status is
modeled as follows:

1 data status
2 properties
3 Data_Model::Data_Representation => Enum;
4 Data_Model::Enumerators => ("Init", "On", "Failed");
5 end status;

All input connections external to these components are modeled as EIC, and all external output connections are
modeled as EOC.

5.1.4. Manage Regulator Interface

With reference to Figure 10, the type classifier of Listing 4 declares the interface of the manage_regulator_interface
thread group component. Interfaces are defined to establish EIC and EOC for the coupled component.

Listing 4: Manage Regulator Interface component type� �
thread group manage_regulator_interface

features
lower_desired_temperature : in data port Iso_Types::lower_desired_temperature;
upper_desired_temperature : in data port Iso_Types::upper_desired_temperature;
current_temperature : in data port Iso_Types::current_temperature;
regulator_mode : in data port Iso_Types::regulator_mode;

regulator_status : out data port Iso_Types::regulator_status;
display_temperature : out data port Iso_Types::display_temperature;
unspecified_temp : out data port Iso_Types::unspecified_value;
regulator_interface_failure : out data port Base_Types::Boolean;
lower_desired_temp : out data port Iso_Types::lower_desired_temp;
upper_desired_temp : out data port Iso_Types::upper_desired_temp;

end manage_regulator_interface;� �
With reference to Figure 9, lower_desired_temperature and upper_desired_temperature in data ports are used
to the get the lower and upper values of desired temperature, respectively. In ports current_temperature, and
regulator_mode are specified to accept current temperature and regulator mode.

Out data ports, regulator_status, display_temperature, unspecified_temp, and regulator_interface_failure

are specified to transmit data of regulator status, display temperature, unspecified value, and Boolean type. Out
ports lower_desired_temp and upper_desired_temp are specified to transmit desired temperature range.

Data types for these data ports are defined within the scope of another package Iso_Types that has been imported
using the AADL with clause.

30



5.2. Behavior Modeling

This section describes component behavior modeling with the proposed DEVS Annex (DA). The implementation
classifier of each component annotated with DA sub-clause is explained in detail. The external data components
referred to as data types are declared within the scope of a package Iso_Types and are detailed in Section 5.1.
along with respective thread components. The AADL data types (see Section 3.1.2.) are mapped to primitive and
compound data types in Java programming language (see Section 3.3.). All data types that are to be communicated
between any two DEVS models implemented for the DEVS-Suite simulator are compound and are inherited from
the entity class. Variables that are not input events nor output events need to be defined as Java classes. In other
words, given the entities, variables, and states in the DEVS Annex, they fall into either input/output or state data
categories for the generated code in the DEVS-Suite simulator.

5.2.1. Manage Interface Failure & Desired Range

The variables section in Listing 5 shows the variable declarations of the DA specification for the example Isolette
system. They have been identified through consideration of the system requirements REQ-MRI-6 ,.., REQ-MRI-9.
Variable dt is of type display_temperature, representing the temperature value to be displayed initialized with 90.
Variable ldt represents the variable Lower Desired Temperature and variable udt represents the variable Upper
Desired Temperature. Data types lower_desired_temperature and upper_desired_temperature specified for
ldt and udt are same as explained in Section 5.1.1.

Listing 5: Manage Interface Failure and Desired Range component implementation� �
thread implementation manage_interfaceFailure_desiredRange.impl
annex devs {**

variables
dt: Iso_Types::display_temperature => 90;
ldt: Iso_Types::lower_desired_temperature => (98,"Valid");
udt: Iso_Types::upper_desired_temperature => (99, "Valid");
rif: Iso_Types::Bool => true;
pd : Base_Types::Float => 100.0;
unspecified_value: Iso_Types::unspecified_value => "unspecified_value";

states
Start: initial 0.0;
Chk_Status: pd;
Set_Vars: 0.0; -- for output, as no direct output from external events

behavior
deltint [ Start ]-> Chk_Status {} ;
deltint [Set_Vars]-> Chk_Status {};

deltext [Chk_Status, lower_desired_temperature?ldt]-> Set_Vars {
"if(ldt.get_status() == \"Invalid\" || udt.get_status() == \"Invalid\")

{rif.setv(true);}
else

{rif.setv(false);}"
};

deltext [Chk_Status, upper_desired_temperature?udt]-> Set_Vars {
"if(udt.get_status() == \"Invalid\" || ldt.get_status() == \"Invalid\")

{rif.setv(true);}
else

{rif.setv(false);}"
};

outfn [Set_Vars]-> regulator_interface_failure!rif {};
outfn [Set_Vars, (rif != true)]-> lower_desired_temp!ldt.t {};
outfn [Set_Vars, (rif != true)]-> upper_desired_temp!udt.t {};
outfn [Set_Vars, (rif == true)]-> unspecified_temp!unspecified_value {};

intest [lower_desired_temperature, (97, "Valid")];
intest [lower_desired_temperature, (100, "Invalid")];
intest [upper_desired_temperature, (101, "Invalid")];
intest [upper_desired_temperature, (97, "Valid")];

intest [lower_desired_temp, 98];

31



intest [regulator_interface_failure, true];

**};

end manage_interfaceFailure_desiredRange.impl;� �
As explained in Section 3.3., for initialization an IntRange object only requires value for cVal, thus both ldt and
udt are initialized with value (98, "Invalid"), and (99, "Invalid"), respectively, where the 98, and 99 are the
initial values for the first elements that are to be modeled as an IntRange, and "Invalid" is the value is for second
elements to be modeled as enumeration. Variable rif is to represent either true or false to indicate validity of the
Lower and Upper Desired Temperature. Variable pd is of type Float with value 100.0, representing the period of
the thread.

The states section of Listing 5 contains declarations for admissible states of our running example. The Start

state marked as initial with ta = 0.0 represents an instantaneous starting state. State Chk_Status with ta = pd

is a transient state. Validity of the status element of variables ldt and udt is checked in this state and variable rif

is set accordingly. State Set_Vars is also an instantaneous state with ta = 0.0. It has been defined to facilitate
output generation as these are only allowed on internal transitions.

In Listing 5, the external transition functions starting with deltext have Chk_Status as source state and Set_Vars

as destination state. The external message in the first function specifies that the message received on port
lower_desired_temperature is stored in variable ldt while in the second function the message received on port
upper_desired_temperature is stored in variable udt. The behavior actions contain an if-else statement for setting
value for rif variable4. If the status of ldt or udt is Invalid variable rif is assigned true otherwise it is assigned
false as per requirements REQ-MRI-6 and REQ-MRI-7.

For our running example, two internal transition functions starting with deltint are defined in Listing 5. One
internal transition function has Start as source state and Chk_Status as destination state while the other internal
transition function has Set_Vars as source state and Chk_Status as destination state. Empty braces indicate that
no behavior action is required to be specified.

In Listing 5, four output functions are specified starting with outfn have Set_Vars as source state. No conditional
statement is specified for first input function as it transmits current value of variable rif through
regulator_interface_failure out port. For second and third out put functions, values of the first element t, tem-
perature range, of the ldt and udt are transmitted through out ports lower_desired_temp and upper_desired_temp,
respectively, if the condition (rif != true) holds as per requirement REQ-MRI-8. Fourth output function is
specified for requirement REQ-MRI-9 and transmits unspecified_value through out port unspecified_temp if
condition (rif == true) holds.

For our running example, in Listing 5, two input functions are specified to provide test inputs for
lower_desired_temperature in port with values (97, "Valid") and (100, "Invalid"). Two Input functions
are also specified to provide test inputs for upper_desired_temperature in port with values (98, "Valid") and
(101, "Invalid"). The first element in these compound variables represent the current temperature while the sec-
ond element represents the status of the current temperature. One input function is defined for upper_desired_temp
with value 98 and one input function is defined for regulator_interface_failure with value true.

5.2.2. Manage Display Temperature

The DA subclause of the implementation classifier of Listing 6 models the detailed behavior of
manage_display_temperature thread component. Variable rgm with initial value INIT is of type regulator_mode

and represents the regulator mode. In the variables section, variable crt is of type current_temperature with
initial value 68.0 for the first element and Valid for the second element. Variable ust is of type Boolean with
false initial value and is used as flag to indicate the unspecified temperature according to REQ-MRI-5. Variable
pd is of type Float and holds the value 100.0 representing the period of the thread.

The states section of Listing 6 contains declarations for admissible states of the manage_display_temperature

thread. The Start state with ta = 0.0 is an initial state and represents an instantaneous starting state. State
4As double quotation marks delimit strings in Xtext grammar so \" is used to specify double quotation marks with in a string in behavior

actions.

32



Chk_Mode with ta = pd is a transient state declared to update the variable ust based on the regulator mode. State
Set_Vars is also an instantaneous state with ta = 0.0. It has been defined to facilitate output generation as these
are only allowed on internal transitions.

behavior section of the DA subclause in Listing 6 includes three internal transitions functions. First internal
transition function has Start as source state and Chk_Mode as destination state. The second internal transition
function is defined for Chk_Mode and has Set_Vars as destination state while the third has Chk_Mode as source state
and Set_Vars as destination state. Empty braces indicate that no behavior action is required to be specified.

In Listing 6, two external transition functions starting with deltext and having Chk_Mode as source states are
defined. One has Chk_Mode as destination state while other has Set_Vars as destination state. The external message
in the first function specifies that the message received on port regulator_mode is stored in variable rgm while in
the second function the message received on port current_temperature is stored in variable crt. No behavior
action is define for the first function while the behavior action for the second function contains an if-else statement
for setting value for ust variable. If the Regulator Mode is Normal, variable ust is assigned true otherwise it is
assigned false as per requirements REQ-MRI-4 and REQ-MRI-5.

In Listing 6, two output functions are specified for Set_Vars state. For the first output function, value of the first ele-
ment t, temperature range, of the crt is transmitted through display_temperature if the condition (ust != true)

holds as per requirement REQ-MRI-4. Second output function is specified for requirement REQ-MRI-5 and trans-
mits unspecified_value through out port unspecified_temp if condition (ust == true) holds.

Listing 6: Manage Display Temperature component implementation� �
thread implementation manage_display_temperature.impl
annex devs {**

variables
rgm : Iso_Types::regulator_mode => "INIT" ;
crt : Iso_Types::current_temperature => (68.0, "Valid");
ust : Iso_Type::Bool => false;
pd : Base_Types::Float => 100;
unspecified_value : Iso_Types::unspecified_value => "unspecified_value";

states
Start: initial 0.0;
Chk_Mode: pd;
Set_Vars: 0.0;

behavior
deltint [ Start ]-> Chk_Mode {} ;
deltint [Chk_Mode]-> Set_Vars {};
deltint [Set_Vars]-> Chk_Mode {};

deltext [Chk_Mode, regulator_mode?rgm]-> Chk_Mode {};
deltext [Chk_Mode, current_temperature?crt]-> Set_Vars {

"if(rgm.getv() == \"NORMAL\")
{ust.setv(false);}

else if(rgm.getv() == \"INIT\" || rgm.getv() == \"FAILED\")
{ust.setv(true)}"

};

outfn [Set_Vars, (ust != true)]-> display_temperature!crt.t {};
outfn [Set_Vars, (ust == true)]-> unspecified_temp!unspecified_value {};

intest [regulator_mode, "NORMAL"];
intest [regulator_mode, "INIT"];
intest [regulator_mode, "FAILED"];
intest [current_temperature, (102, "Valid")];
intest [current_temperature, (106, "Invalid")];

**};

end manage_display_temperature.impl;� �
In Listing 6, two output functions are specified for Set_Vars state. For the first output function, value of the first ele-
ment t, temperature range, of the crt is transmitted through display_temperature if the condition (ust != true)

holds as per requirement REQ-MRI-4. Second output function is specified for requirement REQ-MRI-5 and trans-

33



mits unspecified_value through out port unspecified_temp if condition (ust == true) holds.

In Listing 6, three input functions are specified to provide test inputs for regulator_mode in port with all possible
values "NORMAL", "INIT", and "FAILED". Two input functions are defined for current_temperature in data port
with values (102, "Valid") and (106, "Invalid"). The first element in these composite values represent the
current temperature while the second element represents the status of the current temperature.

5.2.3. Manage Status

DA subclause of the implementation classifier of Listing 7 specifies the behavior of the manage_status thread
component. Variable rgm with initial value INIT is of type regulator_mode and represents the Regulator Mode.
Variable rgs represents Regulator Status and is of type regulator_status with initial value Init. Variable pd is
of type Float and holds the value 100.0 representing the period of the thread.

In Listing 7, the states section contains declarations for admissible states of the manage_status thread. The
Start state with ta = 0.0 is an initial state and represents an instantaneous starting state. State Chk_Mode with
ta = pd is a transient state declared to update the variable ust based on the regulator mode. State Set_Vars is also
an instantaneous state with ta = 0.0. It has been defined to facilitate output generation as these are only allowed
on internal transitions.

Listing 7: Manage Status component implementation� �
thread implementation manage_status.impl
annex devs{**

variables
rgm : Iso_Types::regulator_mode => "INIT";
pd : Base_Types::Float => 100.0;
rgs : Iso_Types::regulator_status => "Init";

states
Start: initial 0.0;
Chk_Mode: pd;
Set_Vars: 0.0;

behavior
deltint [ Start ]-> Chk_Mode {} ;
deltint [Chk_Mode]-> Set_Vars{};
deltint [Set_Vars]-> Chk_Mode{};

deltext [Chk_Mode, regulator_mode?rgm]-> Set_Vars {
"if(rgm.getv() == \"INIT\") {rgs.setv(\"Init\");}
else if(rgm.getv() == \"NORMAL\" )

{rgs.setv(\"On\");}
else if(rgm.getv() == \"FAILED\")

{rgs.setv(\"Failed\");} "
};

outfn [Set_Vars]-> regulator_status!rgs {};

intest [regulator_mode, "NORMAL"];
intest [regulator_mode, "INIT"];
intest [regulator_mode, "FAILED"];

**};

end manage_status.impl;� �
In Listing 7, the behavior section of the DA subclause includes three internal transitions functions. One internal
transition function has Start as source state and Chk_Mode as destination state. The second internal transition
function is defined for Chk_Mode and has Set_Vars as destination state while the third has Chk_Mode as source state
and Set_Vars as destination state. Empty braces indicate that no behavior action is required to be specified.

The external transition function in Listing 7 is defined with Chk_Mode as source and destination state. The external
message in this function specifies that the current value received on port regulator_mode is stored in variable
rgm. The behavior action contains an if-else statement for setting value for rgs variable. If the Regulator Mode is
Normal, variable rgs is assigned Init, On, or FAILED as per requirements REQ-MRI-1,..., REQ-MRI-3.

34



In Listing 7, an output functions is specified for Set_Vars state to transmit value of the rgs variable.

For stand-alone testing, three test input functions are specified to provide inputs for regulator_mode in port with
all possible values NORMAL, INIT, and FAILED.

5.2.4. Manage Regulator Interface

With reference to Figure 10, implementation classifier in Listing 8 specifies the subcomponents and connections
between them. Section subcomponents has references to the respective implementation classifiers of the thread
components explained above.

Section connections in Listing 8 specifies all the port connections (EICs and EOCs) among the subcomponents.
Each connection specification starts with a connection identifier followed by the key word port (to mark the port
connection), name of the source(component and) out data port, and the destination (component and) in data port.

Listing 8: Manage Regulate Interface component implementation� �
thread group implementation manage_regulator_interface.impl

subcomponents
manage_status : thread manage_status.impl;
manage_display_temperature: thread manage_display_temperature.impl;
manage_interface_failure: thread manage_interfaceFailure_desiredRange.impl;

connections
EIC1 : port regulator_mode -> manage_status.regulator_mode;
EOC2 : port manage_status.regulator_status -> regulator_status;

EIC3 : port regulator_mode -> manage_display_temperature.regulator_mode;
EIC4 : port current_temperature -> manage_display_temperature.current_temperature;
EOC5 : port manage_display_temperature.display_temperature -> display_temperature;
EOC6 : port manage_display_temperature.unspecified_temp -> unspecified_temp;

EIC5 : port lower_desired_temperature -> manage_interface_failure.lower_desired_temperature;
EIC6 : port upper_desired_temperature -> manage_interface_failure.upper_desired_temperature;
EOC7 : port manage_interface_failure.lower_desired_temp -> lower_desired_temp;
EOC8 : port manage_interface_failure.upper_desired_temp -> upper_desired_temp;
EOC9 : port manage_interface_failure.regulator_interface_failure ->

regulator_interface_failure;
EOC10: port manage_interface_failure.unspecified_temp -> unspecified_temp;

end manage_regulator_interface.impl;� �
Listing 8 has four EICs and six EOCs.

5.3. Code Generation for DEVS Simulation

This section specifies code generation using the AADL to DEVS CoDE generation Engine (ADCoDE), as ex-
plained in Section 3.3., for all three components of the Isolette example. Data classes, structural, and behavioral
code generated for each component is explained in detail. Data classes are organized in a package Iso_Types cre-
ated by the ADCoDE with the name same as the AADL file containing the data components modeling the data
types while the model classes are organized in package Model. Name of the model is extended with "_sim" to
mark the simulation class.

5.3.1. Manage Interface Failure & Desired Range

Data Classes: ADCoDE generates two data classes required to be used for correct modeling of the
manage_interfaceFailure_desiredRange thread component. One for the lower_desire_temperature and one
is for the upper_desired_temperature. Listing 9 contains the class generated for lower_desired_temperature
while the class generated for upper_desired_temperature is same except for the values, hence is not discussed
here. Complete AADL component models along with generated classes are avaiable at https://github.
com/ehah/AADL-DEVS-Framework.

35



In Listing 9, class lower_desired_temperature is generated based on the data modeling explained in Section 5.1.
It extends Java class entity and has two private variables. Variable t is of type IntRange with 97 and 99 as minVal
and maxVal, respectively. As AADL enumeration type is mapped to String, variable status is generated as of type
String.

Along with a default constructor, three other constructors are also generated with for this class to set the values for
variable cVal, variable t (with maxVal, minVal, and cVal), both variables t and status, and the variable cVal and
status, respectively. Getters and Setters are generated for both the private variables.

Method isInRange gets an integer value and returns if this value is within the temperature range t defined by the
minVal and maxVal.

Structural Code and Behavioral Code: Listing 10 contains the model class generated by the ADCoDE for the
respective thread manage_interfaceFailure_desiredRang.

Listing 9: Data class generated for lower_desired_temperature� �
package Iso_Types;

import GenCol.*;
import structuredEntities.*;

public class lower_desired_temperature extends entity {

private IntRange t = new IntRange(97, 99);
private String status;

public lower_desired_temperature() {

}

public lower_desired_temperature(int cv) {
t.setcVal(cv);

}

public lower_desired_temperature(int lv, int uv, int cv) {
t.setminVal(lv);
t.setmaxVal(uv);
t.setcVal(cv);

}

public lower_desired_temperature(int lv, int uv, int cv, String status ) {
t.setminVal(lv);
t.setmaxVal(uv);
t.setcVal(cv);
this.status = status;

}

public lower_desired_temperature(int cv, String status ) {
t.setcVal(cv);
this.status = status;

}

public void set_t(int lv, int uv, int cv) {
t.setminVal(lv);
t.setmaxVal(uv);
t.setcVal(cv);

}

public IntRange get_t() {
return t;

}

public Boolean isInRange(int val){
return (val >= t.getminVal() && val <= t.getmaxVal());

}

public void set_status(String status) {
this.status = status;

}

public String get_status() {

36



return this.status;
}

}� �
Defined in package RegulateTemperature (which will contain all the data and model classes),
Class manage_interfaceFailure_desiredRange_impl_sim class imports packages structuredEntities and Iso_Types

that contain DEVS-Suite extension and ADCoDE generated data classes, respectively. Rest of the imports are re-
quired for DEVS-Suite simulation.

This class extends the ViewableAtomic with required variables and interface ports as specified in Listing 1 and List-
ing 5. For variable dt which is of type IntRange, the current value 90 is extracted from the specification in DA sub-
clause while the values 68 and 105, for minimum and maximum limits, are extracted from its definition in package
Iso_Types. Variables ldt and udt are of type lower_desired_temperature and upper_desired_temperature,
respectively, with particular initial values. Variable rif is generated as of type booleanEnt while pd is of type
doubleEnt. Variable unspecified_value is generated as of type stringEnt. Integer ranges lower_desired_temp
and upper_desired_temp are generated with specific values extracted from specifications in DA subclause and
definitions in the package Iso_Types. All the required classes have already been generated as explained previ-
ously.

Listing 10: Model class generated for thread manage_interfaceFailure_desiredRange with thread implementation
manage_interfaceFailure_desiredRange_impl� �
-- generated by ADCoDE @ 2019-11-11 00:32:03
-- This class represents DEVS atomic model for thread manage_interfaceFailure_desiredRange
-- with manage_interfaceFailure_desiredRange.impl

package RegulateTemperature;

import java.lang.*;
import GenCol.*;
import model.modeling.*;
import model.simulation.*;
import view.modeling.ViewableAtomic;
import view.simView.*;
import Component.structuredEntities.*;
import Component.Iso_Types.*;

public class manage_interfaceFailure_desiredRange_impl_sim extends ViewableAtomic {

-- variables
private IntRange dt = new IntRange(68, 105, 90);
private lower_desired_temperature ldt = new lower_desired_temperature(98, "Valid");
private upper_desired_temperature udt = new upper_desired_temperature(99, "Valid");
private booleanEnt rif = new booleanEnt(true);
private doubleEnt pd = new doubleEnt(100.0);
private stringEnt unspecified_value = new stringEnt("unspecified_value");

-- for port datatypes
private IntRange lower_desired_temp = new IntRange(96, 101, 98);
private IntRange upper_desired_temp = new IntRange(97, 102, 0);

public manage_interfaceFailure_desiredRange_impl_sim() {
this("manage_interfaceFailure_desiredRange.impl");

}

public manage_interfaceFailure_desiredRange_impl_sim(String name) {
super(name);

-- input and output ports from and for other atomic/coupled models
-- it is recommended to use short names

addInport("lower_desired_temperature");
addInport("upper_desired_temperature");
addOutport("regulator_interface_failure");
addOutport("lower_desired_temp");
addOutport("upper_desired_temp");
addOutport("unspecified_temp");

-- test input for standalone testing
addTestInput("lower_desired_temperature", new lower_desired_temperature(97, "Valid"));
addTestInput("lower_desired_temperature", new lower_desired_temperature(100, "Invalid"));

37



addTestInput("upper_desired_temperature", new upper_desired_temperature(101, "Invalid"));
addTestInput("upper_desired_temperature", new upper_desired_temperature(98, "Valid"));
addTestInput("lower_desired_temp", new intEnt(98));
addTestInput("regulator_interface_failure", new booleanEnt(true));

}

public void initialize() {
-- Can be updated by the modeler
phase = "Start";
sigma = 0.0;

super.initialize();
}

public void deltint() {
if (phaseIs("Start")) {

holdIn("Chk_Status", pd.getv());
}
if (phaseIs("Set_Vars")) {

holdIn("Chk_Status", pd.getv());
}

}

public void deltext(double e, message x) {
Continue(e);

if (phaseIs("Chk_Status")) {
for(int i=0; i<x.getLength(); i++) {

if(messageOnPort(x, "lower_desired_temperature", i)) {
ldt = (lower_desired_temperature) x.getValOnPort("lower_desired_temperature", i);
if(ldt.get_status() == "Invalid" || udt.get_status() == "Invalid")

{rif.setv(true);}
else {rif.setv(false);}

holdIn("Set_Vars", 0.0);
}

}
}
if (phaseIs("Chk_Status")) {

for(int i=0; i<x.getLength(); i++) {
if(messageOnPort(x, "upper_desired_temperature", i)) {
udt = (upper_desired_temperature) x.getValOnPort("upper_desired_temperature", i);
if(udt.get_status() == "Invalid" || ldt.get_status() == "Invalid")

{rif.setv(true);}
else { rif.setv(false); }

holdIn("Set_Vars", 0.0);
}

}
}

}

public message out() {
message m = new message();

if (phaseIs("Set_Vars"))
m.add(makeContent("regulator_interface_failure", rif));
if (phaseIs("Set_Vars"))
{
if( rif.getv()!= true)
m.add(makeContent("lower_desired_temp", ldt.get_t()));
}
if (phaseIs("Set_Vars"))
{
if( rif.getv()!= true)
m.add(makeContent("upper_desired_temp", udt.get_t()));
}
if (phaseIs("Set_Vars"))
{
if( rif.getv()== true)
m.add(makeContent("unspecified_temp", unspecified_value));
}

return m;
}

}� �
In Listing 10, the interface ports are added using the addInport and addOutport methods. The lower_desired_temperature
and the upper_desired_temperature are used to map to the lower_desired_temperature and the upper_desired_temperature
in their corresponding AADL type classifier. The regulator_interface_failure, the lower_desired_temp, the

38



upper_desired_temp, and the unspecified_temp out data ports are mapped to their counterparts as specified in
the features section of their corresponding AADL type classifier.

In Listing 10, the addTestInput methods are generated to map the intest declarations with one-to-one mapping.
Two of these methods provide the test inputs for lower_desired_temperature in port with values (97, "Valid")

and (100, "Invalid"). Two methods are also specified to provide test inputs for upper_desired_temperature in
port with values (98, "Valid") and (101, "Invalid") while one input method is defined for upper_desired_temp
with value 98. One input function is defined for regulator_interface_failure with a booleanEnt object using
value true, and one input function is defined for lower_desired_temp with an intEnt object using value 98.

Method initialize in Listing 10 contains the explicit initialization of the variables required by the DEVS-
Suite. Variable phase="Start" is to set the initial state with time advance function Sigma=0.0. Statement
super.initialize() calls the initialize method of the ViewableAtomic class.

In Listing 10, internal transition function deltint has a control structure with methods phaseIs to map the in-
ternal transition functions defined in Listing 5. If phaseIs("Start") meaning form the Start state, when the
elapsed time e = ta, the control moves the Chk_Status with ta = pd. The second if statement states that if
phaseIs("Set_Vars") and when the elapsed time e = ta, the control moves to the Chk_Status with ta = pd.

External transition function in Listing 10, is generated for the external transition functions defined in Listing 5 by
combining both the occurrences in a control structure. If the phaseIs("Chk_Status") and a message is received on
either the lower_desired_temperature or upper_desired_temperature in data port, the contents of the message
are explored using method messageOnPort and the value is stored in object ldt or udt, accordingly. Variable rif

is then updated based on the current value of the second elements of both ldt and udt. The control is then passed
to the Set_Vars state with ta=0.0 which is an instantaneous state and is introduced to support output generation.

Listing 11: Data class generated for current_temperature� �
package Iso_Types;

import GenCol.*;
import structuredEntities.*;

public class current_temperature extends entity {

private DoubleRange t = new DoubleRange(68.0, 105.0);
private String status;

public current_temperature() {

}

public current_temperature(double cv) {
t.setcVal(cv);

}

public current_temperature(double lv, double uv, double cv) {
t.setminVal(lv);
t.setmaxVal(uv);
t.setcVal(cv);

}

public current_temperature(double lv, double uv, double cv, String status ) {
t.setminVal(lv);
t.setmaxVal(uv);
t.setcVal(cv);
this.status = status;

}

public current_temperature(double cv, String status ) {
t.setcVal(cv);
this.status = status;

}

public void set_t(double lv, double uv, double cv) {
t.setminVal(lv);
t.setmaxVal(uv);
t.setcVal(cv);

}

39



public DoubleRange get_t() {
return t;

}

public Boolean isInRange(double val) {
return (val >= t.getminVal() && val <= t.getmaxVal());

}

public void set_status(String status) {
this.status = status;

}

public String get_status() {
return this.status;

}
}� �
In Listing 10, method out is generated for the output functions defined in Listing 5. The output is only generated
on Set_Vars state by adding the message contents to the message object created using the makeContent method.
If condition (rif!=true) holds then values of first element of both the objects ldt and udt are transmitted on
lower_desired_temp and upper_desired_temp output ports, respectively. If condition (rif==true) holds then
unspecified_value is transmitted on output port unspecified_temp.

5.3.2. Manage Display Temperature

Data Classes: Listing 9 contains the class generated for lower_desired_temperature required to be used for
correct modeling of the manage_display_temperature thread component.

In Listing 11, class current_temperature is generated based on the data modeling explained in Section 5.1. It
extends Java class entity and has two private variables. Variable t is of type DoubleRange with 68.0 and 105.0 as
minVal and maxVal, respectively. As AADL enumeration is mapped to String in Java, the variable status has type
String.

Along with a default constructor, three other constructors are also generated with for this class to set the values for
variable cVal, variable t (with maxVal, minVal, and cVal), both variables t and status, and the variable cVal and
status, respectively. Getters and Setters are generated for both the private variables.

Method isInRange gets an integer value and returns if this value is within the temperature range t defined by the
minVal and maxVal.

Structural Code and Behavioral Code: Listing 12 contains the model class generated by the ADCoDE for the
respective thread manage_display_temperature.

Defined in package RegulateTemperature (which will contain all the data and model classes), Class
manage_display_temperature_impl_sim class imports packages structuredEntities and Iso_Types that con-
tain DEVS-Suite extension and ADCoDE generated data classes, respectively. Rest of the imports are required for
DEVS-Suite simulation.

This class extends the ViewableAtomic with required variables and interface ports specified in Listing 2 and List-
ing 6. For variable rgm which is of type stringEnt with initial value INIT. Variable crt is of type
current_temperature (a newly generated class in the previous step) with initial values 68 and Valid.

Variable ust is generated as of type booleanEnt while pd is of type doubleEnt with values false and 100.0 ex-
tracted from the specification in the DA subclause. Variable unspecified_value is generated as of type stringEnt.

All the required classes have already been generated as explained previously.

40



Listing 12: Model class generated for thread manage_display_temperature with thread implementation man-
age_display_temperature_impl� �
-- generated by ADCoDE @ 2019-11-11 03:00:02
-- This class represents DEVS atomic model for thread manage_display_temperature with
-- manage_display_temperature.impl

package RegulateTemperature;

import java.lang.*;
import GenCol.*;
import model.modeling.*;
import model.simulation.*;
import view.modeling.ViewableAtomic;
import view.simView.*;
import Component.structuredEntities.*;
import Component.Iso_Types.*;

public class manage_display_temperature_impl_sim extends ViewableAtomic {
-- variables
private stringEnt rgm = new stringEnt("INIT");
private current_temperature crt = new current_temperature(68.0, "Valid");
private booleanEnt ust = new booleanEnt(false);
private doubleEnt pd = new doubleEnt(100.0);
private stringEnt unspecified_value = new stringEnt("unspecified_value");

-- for port datatypes
private IntRange display_temperature = new IntRange(68, 105, 0);

public manage_display_temperature_impl_sim() {
this("manage_display_temperature.impl");

}

public manage_display_temperature_impl_sim(String name) {
super(name);

-- input and output ports from and for other atomic/coupled models
-- it is recommended to use short names

addInport("regulator_mode");
addInport("current_temperature");
addOutport("display_temperature");
addOutport("unspecified_temp");

-- test input for standalone testing
addTestInput("regulator_mode", new stringEnt("NORMAL"));
addTestInput("regulator_mode", new stringEnt("INIT"));
addTestInput("regulator_mode", new stringEnt("FAILED"));
addTestInput("current_temperature", new current_temperature(102, "Valid"));

}

public void initialize() {
-- Can be updated by the modeler
phase = "Start";
sigma = 0.0;

super.initialize();
}

public void deltint() {
if (phaseIs("Start")) {

holdIn("Chk_Mode", pd.getv());
}
if (phaseIs("Chk_Mode")) {

holdIn("Set_Vars", 0.0);
}
if (phaseIs("Set_Vars")) {

holdIn("Chk_Mode", pd.getv());
}

}

public void deltext(double e, message x) {
Continue(e);

if (phaseIs("Chk_Mode")) {
for(int i=0; i<x.getLength(); i++) {

if(messageOnPort(x, "regulator_mode", i)) {
rgm = (stringEnt) x.getValOnPort("regulator_mode", i);
holdIn("Chk_Mode", pd.getv());

41



}
}

}
if (phaseIs("Chk_Mode")) {

for(int i=0; i<x.getLength(); i++) {
if(messageOnPort(x, "current_temperature", i)) {
crt = (current_temperature) x.getValOnPort("current_temperature", i);
if(rgm.getv() == "NORMAL")

{ust.setv(false);}
else if(rgm.getv() == "INIT" || rgm.getv() == "FAILED")
{ust.setv(true);}

holdIn("Set_Vars", 0.0);
}

}
}

}

public message out() {
message m = new message();

if (phaseIs("Set_Vars"))
{
if( ust.getv()!= true)
m.add(makeContent("display_temperature", crt.get_t()));
}
if (phaseIs("Set_Vars"))
{
if( ust.getv()== true)
m.add(makeContent("unspecified_temp", unspecified_value));
}

return m;
}

}� �
In Listing 12, interface ports are added using addInport and addOutport methods. In port regulator_mode,
current_temperature in data ports and display_temperature, unspecified_temp out data ports are generated
to map in and out data ports as specified in the features section of the respective AADL type classifier.

In Listing 12, Three addTestInput methods are generated for regulator_mode in port with values NORMAL, INIT ,
FAILED. One input method is generated for current_temperature in port with value 102 for the first element and
value Valid for the second element.

Method initialize in Listing 12 contains the explicit initialization of the variables required by the DEVS-
Suite. Variable phase="Start" is to set the initial state with time advance function Sigma=0.0. Statement
super.initialize() calls the initialize method of the ViewableAtomic class.

In Listing 12, internal transition function deltint has a control structure with methods phaseIs to map the
internal transition functions defined in Listing 5. If phaseIs("Start") meaning form the Start state, when
the elapsed time e = ta, the control moves the Chk_Mode with ta = pd. The second if statement states that if
phaseIs("Chk_Mode") and when the elapsed time e = ta, the control moves to the Set_Vars with ta = 0.0. The
third if statement states that if phaseIs("Set_Vars") and when the elapsed time e = ta, the control moves to the
Chk_Mode with ta = pd.

External transition function in Listing 12, is generated for the external transition functions defined in Listing 6 by
combining both the occurrences in a control structure. If the phaseIs("Chk_Mode") and a message is received on
the regulator_mode in data port, the contents of the message are explored using method messageOnPort and the
value is stored in object rgm. The control stays in Chk_Mode for the next pd time units. If an input is received at
current_temperature in data port, variable crt is updated with this newly value. Then value of the ust is updated
based on the current value of the rgm and the control is then passes to Set_Vars state with ta=0.0 which is an
instantaneous state and is introduced to support output generation.

In Listing 12, method out is generated for the output functions defined in Listing 6. The output is only generated
on Set_Vars state by adding the message contents to the message object created using the makeContent method.
If condition (ust.getv()!=true) holds then value of first element crt is transmitted on display_temperature. If
condition (ust.getv()==true) holds then unspecified_value is transmitted on output port unspecified_temp.

42



5.3.3. Manage Status

Data Classes: As specified in Listing 3 and Listing 7, all data types used with this thread component are primitive
data types so no new data class is generated.

Structural Code and Behavioral Code: Listing 13 contains the model class generated by the ADCoDE for the
respective thread manage_status.

Defined in package RegulateTemperature (which will contain all the data and model classes), the class
manage_status_impl_sim imports packages structuredEntities and Iso_Types that contain the DEVS-Suite
extension and ADCoDE generated data classes, respectively. Rest of the imports are required for DEVS-Suite
simulation.

This class extends the ViewableAtomic with required variables and interface ports specified in Listing 3 and List-
ing 7. For variable rgm which is of type stringEnt with initial value INIT. Variable crt is of type
current_temperature (a newly generated class in the previous step) with initial values 68 and Valid.

Variable rgm is generated as of type stringEnt while pd is of type doubleEnt with values false and 100.0 ex-
tracted from the specification in the DA subclause. Variable rgs is generated as of type stringEnt.

All the required classes have already been generated as explained previously.

Listing 13: Model class generated for thread manage_status with thread implementation manage_status_impl� �
-- generated by ADCoDE @ 2019-11-11 16:08:06
-- This class represents DEVS atomic model for thread manage_status with manage_status.impl

package RegulateTemperature;

import java.lang.*;
import GenCol.*;
import model.modeling.*;
import model.simulation.*;
import view.modeling.ViewableAtomic;
import view.simView.*;
import Component.structuredEntities.*;
import Component.Iso_Types.*;

public class manage_status_impl_sim extends ViewableAtomic {
-- variables
private stringEnt rgm = new stringEnt("INIT");
private doubleEnt pd = new doubleEnt(100.0);
private stringEnt rgs = new stringEnt("Init");

public manage_status_impl_sim() {
this("manage_status.impl");

}

public manage_status_impl_sim(String name) {
super(name);

-- input and output ports from and for other atomic/coupled models
-- it is recommended to use short names

addInport("regulator_mode");
addOutport("regulator_status");

-- test input for standalone testing
addTestInput("regulator_mode", new stringEnt("NORMAL"));
addTestInput("regulator_mode", new stringEnt("INIT"));
addTestInput("regulator_mode", new stringEnt("FAILED"));

}

public void initialize() {
-- Can be updated by the modeler
phase = "Start";
sigma = 0.0;

43



super.initialize();
}

public void deltint() {
if (phaseIs("Start")) {

holdIn("Chk_Mode", pd.getv());
}
if (phaseIs("Chk_Mode")) {

holdIn("Set_Vars", 0.0);
}
if (phaseIs("Set_Vars")) {

holdIn("Chk_Mode", pd.getv());
}

}

public void deltext(double e, message x) {
Continue(e);

if (phaseIs("Chk_Mode")) {
for(int i=0; i<x.getLength(); i++) {

if(messageOnPort(x, "regulator_mode", i)) {
rgm = (stringEnt) x.getValOnPort("regulator_mode", i);
if(rgm.getv() == "INIT") {rgs.setv(Init);}

else if(rgm.getv() == "NORMAL")
{rgs.setv("On");}
else if(rgm.getv() == "FAILED")
{rgs.setv("Failed");}

holdIn("Set_Vars", 0.0);
}

}
}

}

public message out() {
message m = new message();

if (phaseIs("Set_Vars"))
m.add(makeContent("regulator_status", rgs));

return m;
}

}� �
In Listing 13, interface ports are added using addInport and addOutport methods. In port regulator_mode in data
port and regulator_status out data port is generated to map in and out data ports as specified in the features

section of the respective AADL type classifier.

In Listing 13, three addTestInput methods are generated for regulator_mode in port with values NORMAL, INIT ,
FAILED.

Method initialize in Listing 13 contains the explicit initialization of the variables required by the DEVS-
Suite. Variable phase="Start" is to set the initial state with time advance function Sigma=0.0. Statement
super.initialize() calls the initialize method of the ViewableAtomic class.

In Listing 13, internal transition function deltint has a control structure with methods phaseIs to map the
internal transition functions defined in Listing 7. If phaseIs("Start") meaning form the Start state, when
the elapsed time e = ta, the control moves the Chk_Mode with ta = pd. The second if statement states that if
phaseIs("Chk_Mode") and when the elapsed time e = ta, the control moves to the Set_Vars with ta = 0.0. The
third if statement states that if phaseIs("Set_Vars") and when the elapsed time e = ta, the control moves to the
Chk_Mode with ta = pd.

External transition function in Listing 13, is generated for the external transition functions defined in Listing 7 in
a control structure. If the phaseIs("Chk_Mode") and a message is received on the regulator_mode in data port,
the contents of the message are explored using method messageOnPort and the value is stored in object rgm. Then
value of the rgs is updated based on the current value of the rgm and the control is then passes to Set_Vars state
with ta=0.0 which is an instantaneous state and is introduced to support output generation.

In Listing 13, method out is generated for the output function. The output is only generated on Set_Vars state
by adding the message contents to the message object created using the makeContent method. Upon activation,
current value of the rgs is transmitted through regulator_status out data port.

44



5.3.4. Manage Regulator Interface

Listing 14 contains the model class generated by the ADCoDE for the respective thread group
manage_regulator_interface.

Defined in package RegulateTemperature (which will contain all the data and model classes), the class
manage_status_impl_sim imports packages structuredEntities and Iso_Types that contain DEVS-Suite exten-
sion and ADCoDE generated data classes, respectively. Rest of the imports are required for DEVS-Suite simula-
tion.

This class extends the ViewableDiagraph with required interface ports specified in Listing 4 and Listing 8. Three
objects manage_status, manage_display_temperature, and manage_interface_failure are generated and added
to instantiate ViewableAtomic class for already generated respective atomic models.

Interface ports extracted from respective atomic models are added using addInport and addOutport methods. All
the test input ports are also extracted from respective atomic models and are added to using addTestInput method.
Multiple occurrences of method addCoupling are then generated for the connections (EICs and EOCs) specified
in Listing 4. Specification of each occurrence starts with a connection identifier followed by the key word port (to
mark the port connection), name of the source component followed by the out data port, which is then followed by
the destination component and in data port. For an EIC key word this is used for the source component while for
an EOC it is used for destination component.

Listing 14: Model class generated for thread manage_regulator_interface with thread implementation man-
age_regulator_interface_impl� �
-- generated by ADCoDE @ 2019-11-12 01:25:19
-- This class represents DEVS coupled model for thread group manage_regulator_interface.impl

package RegulateTemperature;

import java.awt.*;
import GenCol.*;
import model.modeling.*;
import model.simulation.*;
import view.modeling.ViewableAtomic;
import view.modeling.ViewableComponent;
import view.modeling.ViewableDigraph;
import view.simView.*;
import Component.structuredEntities.*;
import Component.Iso_Types.*;

public class manage_regulator_interface_impl_sim extends ViewableDigraph() {

public manage_regulator_interface_impl_sim() {
super("manage_regulator_interface"); --represents manage_regulator_interface.impl

ViewableAtomic manage_status = new manage_status_impl_sim("manage_status");
ViewableAtomic manage_display_temperature = new manage_display_temperature_impl_sim(

"manage_display_temperature");
ViewableAtomic manage_interface_failure = new manage_interfaceFailure_desiredRange_impl_sim(

"manage_interface_failure");

add(manage_status);
add(manage_display_temperature);
add(manage_interface_failure);

addInport("lower_desired_temperature");
addInport("upper_desired_temperature");
addInport("current_temperature");
addInport("regulator_mode");
addOutport("regulator_status");
addOutport("display_temperature");
addOutport("unspecified_temp");
addOutport("regulator_interface_failure");
addOutport("lower_desired_temp");
addOutport("upper_desired_temp");

45



addTestInput("regulator_mode", new stringEnt("NORMAL"));
addTestInput("regulator_mode", new stringEnt("INIT"));
addTestInput("regulator_mode", new stringEnt("FAILED"));
addTestInput("current_temperature", new current_temperature(102, "Valid"));
addTestInput("lower_desired_temperature", new lower_desired_temperature(97, "Valid"));
addTestInput("lower_desired_temperature", new lower_desired_temperature(100, "Invalid"));
addTestInput("upper_desired_temperature", new upper_desired_temperature(101, "Invalid"));
addTestInput("upper_desired_temperature", new upper_desired_temperature(98, "Valid"));
addTestInput("lower_desired_temp", new intEnt(98));
addTestInput("regulator_interface_failure", new booleanEnt(true));

addCoupling(this, "regulator_mode", manage_status, "regulator_mode");
addCoupling(manage_status, "regulator_status", this, "regulator_status");
addCoupling(this, "regulator_mode", manage_display_temperature, "regulator_mode");
addCoupling(this, "current_temperature", manage_display_temperature, "current_temperature");
addCoupling(manage_display_temperature, "display_temperature", this, "display_temperature");
addCoupling(manage_display_temperature, "unspecified_temp", this, "unspecified_temp");
addCoupling(this, "lower_desired_temperature", manage_interface_failure,

"lower_desired_temperature");
addCoupling(this, "upper_desired_temperature", manage_interface_failure,

"upper_desired_temperature");
addCoupling(manage_interface_failure, "lower_desired_temp", this, "lower_desired_temp");
addCoupling(manage_interface_failure, "upper_desired_temp", this, "upper_desired_temp");
addCoupling(manage_interface_failure, "regulator_interface_failure", this,

"regulator_interface_failure");
addCoupling(manage_interface_failure, "unspecified_temp", this, "unspecified_temp");

}

}� �
6. Simulation using DEVS-Suite

The Regulator Interface model developed in the AADL-DEVS framework can be simulated in the DEVS-Suite
simulator. The UML class diagram for this simulation model is shown in Figure 11. The manage_status_impl_sim,
manage_display_temperate_impl_sim, and manage_intefaceFailure_desiredRange_impl_sim clases are the gener-
ated atomic DEVS models. The componentized visualization of the manage regulator interface is depicted in
Figure 12. This is a hierarchical model that has three atomic models. This model has input and output ports with
external input and external output couplings. The three atomic models produce four output messages; these are
compound DEVS-Suite data types. The output events shown in Figure 12 are the result of two simulation steps.
The manage_regulator_interface_impl_sim is the generated coupled DEVS model.

6.1. Atomic Model Simulation

The DEVS-Suite simulator has two simulation protocols supporting the execution of atomic and coupled models.
The atomic simulator protocol defines the order of executions of the external, internal, confluent, and output
functions of any atomic model. For example, considering the manage_status atomic model, once an event is
received on the regulator_mode input port, the external transition function retrieves and evaluates its value to set
the mode of the regulator. For example, when the value of the received input event is "NORMAL", the regulator
status is set to "Set_Vars" (see Listing 13). Since sigma for processing the external events is 0.0, the output event
"on" is dispatched immediately on the "regulator_status" output port. After the dispatching of the output, the phase
is set to "Chk_Mode" using the internal transition function. Each atomic model can be independently simulated
using test input ports such as "addTestInput("regulator_model", new stringEnt("Normal")).

6.2. Coupled Model Simulation

The coupled simulator protocol is responsible for execution of all atomic and coupled models as well as all in-
put/output communications (i.e., transmitting events amongst to and from every eligible atomic and coupled mod-
els). The coupled simulator delegates the execution of the atomic models to their respective independent simulators.
In the first step of the simulation depicted in Figure 12, the test input ports are used to inject input events to the
atomic models via the input ports of the manage_regulator_interface coupled model. All atomic model receive
their input events concurrently and execute their external transition functions in parallel. In this step, each model’s

46



Fig. 11. Manage Regulate Interface UML class diagram

input events are evaluated and processed (i.e., independently their states are updated and the time for their next
internal events are set). In the second step, each model’s output function followed by its internal transition function
are executed in the order given. The output events are produced and then transmitted concurrently to the output
ports of the manage_regulator_interface coupled model. For each model’s internal transition function, the state and
its time to next internal event are updated. Although the atomic models in the coupled manage_regulator_interface
model are not coupled to one another, they can have feedback relationships to one another.

It is important to note that the couple model manage_regulate_interface in Figure 12 corresponds to the imple-
mentation classifier manage_regulator_interface.impl specified in Listing 8. The atomic models correspond the
sub components, specified in the subcomponents section Listing 8, declared as the specialization of the respective
implementation classifiers.

7. Related Work

The existing research that relate to this work can be viewed in three perspectives. First, extending the AADL
architectural core language with the DEVS behavioral modeling language. Second, the code generation from
AADL models for simulation and execution. Third, the development of an integrated framework where structural
and behavioral designs are supported in as much as possible under a unified specification and execution framework.

In view of the first perspective, the annex mechanism in AADL is used, for example, to develop the BLESS and
Hybrid (HA) annexes [18, 3]. The BLESS annex is created to specify behavior for component interfaces, define
formal semantics for component implementations, and provide tool support for reasoning about the compliance of
behaviors to component’s specifications. It uses states and state transitions for specification and proving discrete
behavior correctness of control systems. Hybrid annex was introduced for the continuous physical behavior and
communication with discrete cyber systems. The BLESS annex, as compared with the Hybrid annex, is closely
related to the proposed AADL-DEVS framework considering BLESS is for discretized behaviors of physical
systems. The DEVS Annex (DA), in contrast to BLESS, is based on DEVS, a universal modeling language for
discrete-event and discrete-time systems.

47



Fig. 12. Manage Regulate Interface Coupled DEVS model

The AADL facilitates code generation which is explored and used in different research projects. Code generation
to support Revenscar Profile restriction on architecture models with OCARINA tool-suite is explored in [20]. Gen-
erated C and Ada code is then used for schedualabiliy and safety analyses. In [36], system-level co-simulation of
integrated systems with Polychrony is discussed. The synchronous sub-set of AADL with Simulink is exploited for
functional behavior modeling while the system-level architecture is modeled using AADL. Automatic C language
code generation without human intervention is discussed in [41]. Respective code is automatically generated for
the AADL process, thread, subprogram, and data components. To facilitate multi-platform execution, template-
based code generation is exploited [13]. Rules are defined for code generation for different object platforms based
on predefined templates. The code can be generated from AADL models based on model transformation with
Model-driven Architecture(MDA) techniques for RTOS [6].

In contrast to these approaches, code generation in the AADL-DEVS framework is targeted for the DEVS-Suite
simulator. Java code is generated from the combined AADL and DA specifications. Required data and model
classes are generated for data types (specified using data components) and software components, respectively.
Structural code is generated using the interface specification in the type classifier, while the behavioral code is
generated for different sections of the DA subclause.

From the third perspective, early works have utilized meta-programmable and model-integrated computing for
virtual systems-of-systems evaluations [33]. DEVS simulation is also used with AADL for verification of TT-
Ethernet modeled using AADL [25]. Considering the DEVS modeling approach, it is advocated to be used for
aviation system simulation by combining it AADL and the Aviation Scenario Definition Language (ASDL) [16].
The DEVSML [22], EMF-DEVS [27], and DEVS Natural Language (DNL) [38], among others, have been de-
veloped for the Parallel DEVS formalism. The DEVSML and DNL use Xtext which supports the Extended BNF
grammar within the Eclipse Modeling Framework (EMF). The EMF-DEVS uses the Ecore language also supported
by EMF. Other research include automation for translating Conceptual DEVS Models to code for target simula-
tors [8]. Compared to these approaches, the proposed DA grammar is grounded in both the AADL and DEVS
modeling languages. Furthermore, the time constraints defined for the AADL-compliant model can be used to
extend the DA grammar to support Action-Level, Real-Time DEVS (ALRT-DEVS) [26, 12] modeling formalism.
Such extension to the DA can support simulation under real-time constraints defined in the model and enforced by
the host the DEVS-Suite simulator’s host computing platform. A first prototype of the DA supporting logical-time
simulation using the DEVS-Suite simulator is developed as a plug-in for OSATE. The DA provides a basis for
combined static and dynamic design, verification, and validation.

8. Conclusion and Future Work

Cyber-Physical Systems (CPS) are pervasive in our daily life. Due to the complexity and high-integration, the
development of such systems is challenging. To cope with this challenge, we have presented an AADL-DEVS
framework for modeling and simulation of time-critical systems. The data, structure, and behavior of the computa-
tional part of embedded or CPS can be specified with the Architecture Analysis & Design Language (AADL) and
DA. The core AADL is extended with DEVS Annex for detailed behavior modeling. Such models can be executed

48



using the DEVS-Suite simulator. AADL to DEVS Code Generation Engine (ADCoDE) is developed to transform
composite models with DA specifications to DEVS-Suite code.

Short-term future work includes using the AADL-DEVS framework for modeling and simulation of more complex
systems like Transactive energy. Long-term future work includes extending the DA to support ALRT-DEVS mod-
eling and simulation. The integration of DEVS and Hybrid annexes for continuous modeling is also an interesting
future work. Another closely related future research is to support DA behavior modeling with the UML Statecharts
and Activity specification.

49



A DEVS Annex Syntax Card

Grammar rules follow AS5506A5 with literal symbols written in

A1. Lexical Elements

base ::= digit [ digit ]

based_integer_literal ::= base # based_numeral #

based_numeral ::= extended_digit [underline] extended_digit

character ::= graphic_character | format_effector
| other_control_character

comment ::= - {non_end_of_line_character}*

decimal_integer_literal ::= numeral

decimal_real_literal ::= numeral . numeral [ exponent ]

exponent ::= E [+] numeral | E - numeral

extended_digit ::=
digit | A | B | C | D | E | F | a | b | c | d | e | f

graphic_character ::= identifier_letter | digit | space_character
| special_character

integer_literal ::=
decimal_integer_literal | based_integer_literal

identifier ::= identifier_letter {[underline] letter_or_digit}*

letter_or_digit ::= identifier_letter | digit

numeral ::= digit {[underline] digit}*

numeric_literal ::= integer_literal | real_literal

real_literal ::= decimal_real_literal

string_element ::= \‘ | \’ | non_string_bracket_graphic_character

string_literal ::= ‘ {string_element}* ’

5SAE Standard AS5506A, Section 1.5 Method of Description and Syntax Notation

50



A2. Grammar Productions

devs_annex ::=
[ variables { variable_declaration }+ ]
[ states state_declaration ]
[ behavior atomic_behavior_declaration ]

variable_declaration ::=
variable_identifier :
(variable_type_identifier | data_component_classifier_reference) =>
value_declaration ;

value_declaration ::=
simple_value | compound_value

simple_value ::=
INTEGER_LIT | REAL_LIT | (true | false) | STRING

compound_value ::=
{ ( simple_value , simple_value ) }+

state_declaration ::=
state_identifier : [ initial ]
( REAL_LIT | INFINITY | variable_identifier ) ;

atomic_behavior_declaration ::=
deltext external_transition_declaration |
deltint internal_transition_declaration |
outfn outfn_declaration |
intest intest_declaration

external_transition_declaration ::=
deltext [ source_state_identifier , message ]->
destination_state_identifier behavior_action

message::=
port_identifier (? | !) variable_identifier ;

behavior_action ::=
{ STRING }

internal_transition_declaration ::=
deltint [ source_state_identifier ]->
destination_state_identifier behavior_action ;

outfn_declaration ::=
outfn [ source_state_identifier [ , conditional_expression ] ]-> message
behavior_action ;

conditional_expression ::=
boolean_term [ and boolean_term [ and boolean_term ] |
or boolean_term [ or boolean_term ] ]

boolean_term::=
[ not ] [ variable_identifier | [ boolean_expression ] | relation ]

51



boolean_expression ::=
boolean_term

| boolean_term { and boolean_term }*
| boolean_term { or boolean_term }*
| boolean_term { xor boolean_term }*
| relation

boolean_term ::=
[ not ] ( true | false | ( boolean_expression )
| relation )

relation::=
( numeric_expression ( relational_symbol ) numeric_expression )

intest_declaration ::=
intest [ port_identifier , value_declaration ] ;

numeric_expression ::=
numeric_term | numeric_term - numeric_term

| numeric_term / numeric_term
| numeric_term mod numeric_term
| numeric_term { + numeric_term }+
| numeric_term { * numeric_term }+
| numeric_term ˆ numeric_literal

numeric_term::=
[ - ] ( numeric_literal | variable_identifier |
(numeric_expression) )

numeric_literal ::= integer_literal | real_literal

relation_symbol ::= = | <> | > | < | <= | >=

52



References

[1] ACIMS, DEVS-Suite simulator, version 5.0.0, https://acims.asu.edu/software/devs-suite, 2017.

[2] E. M. Ahmad and H. S. Sarjoughian, A behavior annex for AADL using the DEVS formalism, 2019 Spring
Simulation Conference (SpringSim), April 2019, pp. 1–12.

[3] Ehsan Ahmad, Brian R. Larson, Stephen C. Barrett, Naijun Zhan, and Yunwei Dong, Hybrid annex: An
AADL extension for continuous behavior and cyber-physical interaction modeling, Ada Lett. 34 (2014),
no. 3, 29–38.

[4] Rajeev Alur, Principles of cyber-physical systems, MIT Press, 2015.

[5] Dominique Blouin and Skander Turki, AADL requirements annex (draft, progress update), Tech. report, 2009.

[6] M. Brun, J. Delatour, and Y. Trinquet, Code generation from AADL to a real-time operating system: An exper-
imentation feedback on the use of model transformation, 13th IEEE International Conference on Engineering
of Complex Computer Systems (iceccs 2008), March 2008, pp. 257–262.

[7] Yu Chen and Hessam S. Sarjoughian, A component-based simulator for MIPS32 processors, Simulation 86
(2010), no. 5-6, 271–290.

[8] Maximiliano Cristiá, Diego A. Hollmann, and Claudia S. Frydman, A multi-target compiler for CML-DEVS,
Simulation 95 (2019), no. 1.

[9] Peter Feiler and David Gluch, Model-based engineering with AADL: An introduction to the SAE architecture
analysis & design language, Addison-Wesley, 2012.

[10] Peter Feiler, Jörgen Hansson, Dionisio de Niz, and Lutz Wrage, System architecture virtual integration: An
industrial case study, Tech. Report CMU/SEI-2009-TR-017, SEI, CMU, 2009.

[11] Andrew E. Ferayorni and Hessam S. Sarjoughian, Domain driven simulation modeling for software design,
Proceedings of the 2007 Summer Computer Simulation Conference (San Diego, CA, USA), SCSC ’07, So-
ciety for Computer Simulation International, 2007, pp. 297–304.

[12] Soroosh Gholami and Hessam S. Sarjoughian, Action-level real-time network-on-chip modeling, Simulation
Modelling Practice and Theory 77 (2017), 272–291.

[13] Kai Hu, Zhangbo Duan, Jiye Wang, Lingchao Gao, and Lihong Shang, Template-based AADL automatic
code generation, Front. Comput. Sci. 13 (2019), no. 4, 698–714.

[14] SAE International, Architecture analysis & design language (AADL) annex volume 2: Annex d:behavior
model annex, (2011).

[15] , SAE AS5506C, Architecture Analysis & Design Language (AADL), (2012).

[16] Shafagh Jafer, Bernard Zeigler, and Doohwan D. H. Kim, A framework for rapid configuration of collabora-
tive aviation system-of-systems simulations, Modelling and Simulation for Autonomous Systems (Jan Mazal,
ed.), 2018, pp. 92–105.

[17] Sungung Kim, Hessam S. Sarjoughian, and Vignesh Elamvazhuthi, DEVS-suite: A simulator supporting
visual experimentation design and behavior monitoring, Proceedings of the 2009 Spring Simulation Mul-
ticonference (San Diego, CA, USA), SpringSim ’09, Society for Computer Simulation International, 2009,
pp. 161:1–161:7.

[18] B. Larson, P. Chalin, and J. Hatcliff, BLESS: Formal specification and verification of behaviors for embedded
systems with software, NASA Formal Methods, LNCS, vol. 7871, Springer, 2013, pp. 276–290.

[19] Brian R. Larson, John Hatcliff, Kim Fowler, and Julian Delange, Illustrating the AADL error modeling annex
(v.2) using a simple safety-critical medical device, Proceedings of the 2013 ACM SIGAda Annual Conference
on High Integrity Language Technology, HILT ’13, ACM, 2013, pp. 65–84.

53



[20] Gilles Lasnier, Bechir Zalila, Laurent Pautet, and Jérome Hugues, Ocarina : An environment for AADL
models analysis and automatic code generation for high integrity applications, Reliable Software Technolo-
gies – Ada-Europe 2009 (Berlin, Heidelberg) (Fabrice Kordon and Yvon Kermarrec, eds.), Springer Berlin
Heidelberg, 2009, pp. 237–250.

[21] David L. Lempia and Steven P. Miller, Requirement engineering management handbook, Tech. Report
DOT/FAA/AR-08/32, Federal Aviation Administration, 2009.

[22] Saurabh Mittal and Scott A. Douglass, DEVSML 2.0: the language and the stack, 2012 Spring Simulation
Multiconference, SpringSim ’12, Orlando, FL, USA, March 26-29, 2012, Proceedings of the 2012 Sympo-
sium on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium, 2012, p. 17.

[23] Mohammed A. Muqsith, Hessam S. Sarjoughian, Dazhi Huang, and Stephen S. Yau, Simulating adaptive
service-oriented software systems, Simulation 87 (2011), no. 11, 915–931.

[24] OSATE, Open Source AADL Tool Environment, version 2.3.4, http://osate.org/, 2018.

[25] Tiyam Robati, Amine El Kouhen, Abdelouahed Gherbi, and John Mullins, Simulation-Based Verification of
Avionic Systems Deployed on IMA Architectures, MoDELS’15, 2015.

[26] Hessam S. Sarjoughian and Soroosh Gholami, Action-level real-time DEVS modeling and simulation, Simu-
lation 91 (2015), no. 10, 869–887.

[27] Hessam S. Sarjoughian and Abbas Mahmoodi Markid, EMF-DEVS modeling, 2012 Spring Simulation Mul-
ticonference, SpringSim ’12, Orlando, FL, USA, March 26-29, 2012, Proceedings of the 2012 Symposium
on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium, 2012, p. 19.

[28] Hessam S. Sarjoughian and Randy K. Singh, Building simulation modeling environments using systems the-
ory and software architecture principles, Proceedings of the 2004 Advanced Simulation Technology Sympo-
sium, SCSC ’07, 2007, pp. 297–304.

[29] Hessam S. Sarjoughian and Savitha Sundaramoorthi, Superdense time trajectories for DEVS simulation mod-
els, Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Sym-
posium, part of the 2015 Spring Simulation Multiconference, SpringSim ’15, Alexandria, VA, USA, April
12-15, 2015, 2015, pp. 249–256.

[30] Hessam S. Sarjoughian and Bernard P. Zeigler, Devsjava: Basis for a DEVS-based collaborative M&S envi-
ronment, SCS International Conference on Web-Based Modeling and Simulation, 1998, pp. 29–36.

[31] Software Engineering Institute, Carnegie Mellon University, Osate2, https://wiki.sei.cmu.edu/
aadl/index.php/Osate_2, Jan 2012.

[32] Janos Sztipanovits, Ted Bapty, Xenofon D. Koutsoukos, Zsolt Lattmann, Sandeep Neema, and Ethan K.
Jackson, Model and tool integration platforms for cyber-physical system design, Proceedings of the IEEE
106 (2018), no. 9, 1501–1526.

[33] Janos Sztipanovits and Gabor Karsai, Model-integrated computing, IEEE Computer 30 (1997), no. 4, 110–
111.

[34] Steve Vestal, MetaH, SIGSOFT Softw. Eng. Notes 25 (2000), no. 1, 105–.

[35] A. Wayne Wymore, Model-based systems engineering, CRC Press, 1993.

[36] Huafeng Yu, Yue Ma, Yann Glouche, Jean-Pierre Talpin, Loïc Besnard, Thierry Gautier, Paul Le Guernic,
Andres Toom, and Odile Laurent, System-level co-simulation of integrated avionics using polychrony, Pro-
ceedings of the 2011 ACM Symposium on Applied Computing (New York, NY, USA), SAC ’11, Association
for Computing Machinery, 2011, p. 354–359.

[37] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim, Theory of modeling and simulation, 2nd ed., Aca-
demic Press, Inc., Orlando, FL, USA, 2000.

[38] Bernard P. Zeigler and Hessam S. Sarjoughian, Guide to modeling and simulation of systems of systems, 2nd
ed., Simulation Foundations, Methods and Applications, Springer, 2017.

54



[39] Bernard P. Zeigler, Hessam S. Sarjoughian, and Vincent Au, Object-Oriented DEVS, Proceedings of
AeriSense, vol. 3083, SPIE, 1997, pp. 100–111.

[40] Chao Zhang and Hessam S. Sarjoughian, Cellular automata DEVS: A modeling, simulation, and visualization
environment, Proceedings of the 10th EAI International Conference on Simulation Tools and Techniques,
SIMUTOOLS 2017, Hong Kong, China, September 11-13, 2017, 2017, pp. 11–19.

[41] Chen Zhang, Xinyi Niu, and Bin Yu, A method of automatic code generation based on AADL model, Pro-
ceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence (New
York, NY, USA), CSAI ’18, ACM, 2018, pp. 180–184.

55


