

Componentized-WEAP RESTful Framework

Installation and User Guide*

Version 1.0

Mostafa D. Fard

Hessam S. Sarjoughian**

Arizona Center for Integrative Modeling and Simulation

School of Computing, Informatics, and Decision System Engineering

Arizona State University, Tempe, Arizona, USA

https://acims.asu.edu

July 2020

* Funding: United States National Science Foundation Grant #CNS-1639227, “INFEWS/T2: Flexible Model Compositions and Visual

Representations for Planning and Policy Decisions at the Sub-regional level of food-energy-water nexus”.

** Point-of-Contact

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 2

1. Componentized-WEAP Software Application

The Componentized-WEAP (C-WEAP) is a RESTful framework application [1] written in NodeJS for the Water

Evaluation and Planning (WEAP) system [2, 3].

2. WEAP Software System

WEAP is a propriety system software supported for the Windows OS. Information on licensing this software is

available at WEAP Licensing.

3. Executable Componentized-WEAP Software Application Installation

The executable version of the Componentized-WEAP (C-WEAP) framework is a standalone application to be run on

the Windows OS. You just need to download the executables version of the C-WEAP framework from

https://acims.asu.edu/software/c-weap/, then unzip the downloaded file in a directory. It contains the “workspace”

folder (which uses to manage the required flat files by the C-WEAP framework and WEAP system), the “config.json”

file (to set the host and port number of the web-service), the “node-activex.node” (the required third-party packages),

and the C-WEAP.exe file. All required libraries and frameworks (NodeJS, Express, etc.) are embedded in this

executable file. The unzipped directory should not be installed shared disk drives such as Dropbox.

To run the C-WEAP, double-click on the C-WEAP.exe file. Upon successful execution of the C-WEAP application,

the message “Componentized-WEAP is listening at http://{hostname}:{port}” appears in the first line of a

Command Prompt console such as the one shown in Figure 1.

Figure 1. Windows console displaying the successful execution of the C-WEAP.

The C-WEAP can invoke a defined set of WEAP system APIs following the procedure described and exemplified in

Section 6.

4. Componentized-WEAP Source Code Installation

The following software frameworks and tools need to be installed to execute the C-WEAP software application from

the source code.

4.1. NodeJS

Download the NodeJS framework for the Windows 64-bit OS (MSI or ZIP) from https://nodejs.org/en/download/ (see

Figure 2). At the time of preparing this user guide, the latest version of the NodeJS framework is 12.18.1. It also

includes npm 6.14.5 (Node Package Management). After downloading, use the default choices to install NodeJS.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://www.weap21.org/index.asp
https://www.weap21.org/index.asp?action=217
https://acims.asu.edu/software/c-weap/
https://nodejs.org/en/download/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 3

Figure 2. NodeJS download page (https://nodejs.org/en/download/).

4.2. Python

Installing Python requires multiple installations in the order provided below.

Step 1: Choose and click on Python version 2.7.18 from https://www.python.org/downloads/.

Figure 3. Python download page (https://www.python.org/downloads/).

Step 2: Download the Windows x86-64 MSI installer of the python 2.7 (see Figure 4) and install it using the default

choices.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://www.python.org/downloads/
https://www.python.org/downloads/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 4

Figure 4. Python 2.7.18 download page (https://www.python.org/downloads/release/python-2718/).

Step 3: Set the environment variable by following the steps shown in Figure 5.

(a) system properties (b) environments variables

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://www.python.org/downloads/release/python-2718/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 5

(c) edit environment variables

Figure 5. Add Python path to the Windows Environments Variables.

4.3. TypeScript

Run the following commands using the Windows Command Prompt (cmd) as follows:

Step 1: npm install typescript --global

Step 2: npm install node-gyp --global

Run the following command using Windows PowerShell (run as administrator)

Step 1: npm install --global --production windows-build-tools

Note: Download & Install Visual C++ from here if there is an error in executing the previous step. Also, this step may

take a long time (e.g., ~15-30 minutes) and further require multiple runs.

4.4. Git

Download and install the Git version control from https://git-scm.com/downloads. At the time of preparing this user

guide, the latest version is 2.27.0. Use the default choices in the installation steps.

Figure 6. Git download page.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://git-scm.com/downloads

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 6

4.5. VS-Code

Different IDEs can be used for code development. We recommend the VS-Code editor, and it is used in the rest of

this User Guide. Download the Windows version of the VS-Code from https://code.visualstudio.com/Download. Use

the default choices in the installation steps.

Figure 7. VS-Code Editor download page.

After installing the VS-Code, some extension must be installed (e.g., TSLint), and some are recommended to be

installed (e.g., Code Runner). As shown in Figure 8, open the VS-Code editor, go to the extension page, type TSLint,

and click on the install button. The same can be done for the Code Runner extension.

Figure 8. VS-Code editor, extensions page.

Note: The execution policy in the Windows OS Client must be changed to RemoteSigned to be able to run the script.

For more information, see About Execution Policy and Set Execution Policy pages. So, open Windows PowerShell

(run as administrator), and run:

• Set-ExecutionPolicy RemoteSigned

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://code.visualstudio.com/Download
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy?view=powershell-7

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 7

4.6. Download Source Code

To download the C-WEAP framework from the GitHub in the VS-Code editor, follow the following steps:

1) Open VS-Code

2) Press CTRL+SHIFT+P (View/Command Palette...) and type “git:Clone”

3) Enter the C-WEAP git URL (https://github.com/comses/ComponentizedWEAP.git); contact hss@asu.edu

for access.

4) Select a folder for the project to be uploaded

After downloading the source code, you should see the folders similar to Figure 9 in the Explorer window of the VS-

Code editor.

Figure 9. The C-WEAP project directory in the VS-Code editor.

4.7. Update the C-WEAP Packages

After downloading the C-WEAP framework for the first time, or after changing (new updates) any third-party

packages (the dependencies section of the “./package.json” file, see Figure 10), updates to the framework as needed

using the following steps:

Step 1: Open VS-Code

Step 2: Right-click on the project folder in the Explorer window (or right clock in the blank area of the project in

the Explorer window), and select Open in Terminal (as shown in Figure 10).

Step 3: Run the following command in the Terminal (see Figure 10) to update all packages:

o npm install

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://github.com/comses/ComponentizedWEAP.git
mailto:hss@asu.edu

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 8

Figure 10. Open Terminal for a project in the VS-Code editor.

4.8. Building the C-WEAP RESTful Framework

The C-WEAP framework is written in TypeScript framework (to have extra facilities which are not available in

JavaScript). Finally, the TypeScript files must be converted to the JavaScript files to be able to run on the server using

the NodeJS framework. TypeScript does the conversion automatically (using the “./tsconfig.json” file) using the

following command:

Step 1: Open VS-Code

Step 2: Press CTRL+SHIFT+P (View/Command Palette...) and type “tasks:run build task”

Step 3: Select “tsc: build – tsconfig.json” in the opened list

Note: In the C-WEAP RESTful framework, all the TypeScript files are organized under the “./src” folder, and all the

generated JavaScript files are under the “./js” folder (based on the configuration in the tsconfig.json file). Also, the

conversion is from TypeScript to ES6.

4.9. Running the C-WEAP RESTful Framework

Be sure that all changes in the TypeScript files are converted to JavaScript before running the C-WEAP framework.

The configuration to run the project saves in the “./.vscode/launch.json” file. The Run page in the VS-Code editor

has a run button to execute the launch file. As can be seen in Figure 11, all open projects in the VS-Code are listed. A

project must be selected in the drop-down list (e.g., Componentized-WEAP), then click on the start debugging button

() to run it.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 9

Figure 11. Running a project in the VS-Code editor.

As shown in Figure 12, after running the C-WEAP framework, the “Componentized-WEAP is listening at

http://localhost:8080” must be displayed in the DEBUG CONSOLE tab of the editor.

Figure 12. The C-WEAP framework after running in the VS-Code editor.

Note: The WEAP system must be running before running the C-WEAP framework. (Running the C-WEAP prior to

running the WEAP system produces unexpected results).

5. Define the C-WEAP Configuration

For each WEAP’s project that is going to be used in the C-WEAP framework, the required configuration files must

be defined under the “Workspace” folder. First, a folder must be defined with the same name as the WEAP’s project

(called project’s folder). The “Inputs.csv” and “Outputs.csv” files must be defined under the project’s folder if we

need to set some properties of the input and/or output variables of different components. The “Data Variable Report”

form can be used to define the “Inputs.csv”, automatically. To do that, click on the menu items “Edit->Data

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 10

Variable->Report“ in the WEAP IDE. As shown in Figure 13, use the “Comma Separated Value (*.csv)” for the

“Save as” property, then store the csv file under the project’s folder. This csv file has a specific structure that the C-

WEAP framework will parse it at running time to extract the Min, Max, Time Scale, and User Defined properties for

the variables of the different components (these variables are definable in the WEAP IDE, but there are not accessible

via WEAP’s APIs). The “Inputs.csv” file has some extra properties (e.g., Category, Description, etc.), which are not

important for the C-WEAP (Just leave them as they are).

The “Outputs.csv” file must be defined by the user, and it has six properties. They are six properties that are used in

the “Inputs.csv” file, as well. The properties are “Branch“ to define the entity type, “Variable“ to define the variable

name, “Min” and “Max” to define the acceptable range for the variable, “Time Scale” to define the time granularity

of the variable, and “User-Defined?” to show that the variable is defined by user or it is a default variable in the

WEAP system. They must be in the presented order (first Branch, then Variable, and so on).

Note: Without defining the inputs.csv/outputs.csv file, all input/output variables will have Yearly time-step in the C-

WEAP framework.

Figure 13. The C-WEAP framework after running in the VS-Code editor.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 11

6. Modules

The C-WEAP APIs are categorized into five modules related to different parts of the WEAP system or subset of

WEAP's entities. The modules are Project, Version, Node, Link, and Flow. Each module has a set of APIs to read/write

data from/to the WEAP system. The used WEAP’s APIs to develop the C-WEAP RESTful framework is listed in

Appendix A.

The URL patterns for five API types are shown in Table 1. The pattern inside each open and close pair bracket is

optional. In the pattern of the URLs, constants are written in PascalCase style; parameters start with colons and written

in camelCase style; query parameters (to apply to some filters on returned data) written after the question mark by

Key=Value (camelCase style for the Key part). All URLs start with constant “/Water”. The NodeType, LinkType,

FlowType, VariableType, and subNodeType (which are bold) in the patterns, must be replaced by a valid value from

Table 2. In the Flow URLs, the subNodeType uses to access a specific collection of sub-nodes, and then use

:subNodeName to select one. For example, the URL “/Water/demo/DemandSites/phoenix” returns the phoenix

demand site’s data of the demo project. The data of a variable can be retrieved by mentioning the name of the variable

and the intended scenario. Query parameters can be used to filter the returned data (the years and time-steps).

Table 1. URL pattern for different types of APIs.

Category URL Patterns

Project /Water[/:projectName[/Run]]

Version /Water/:projectName/Versions[/:versionName/Revert]

Key /Water/:projectName/Keys[/:KeyName/:scenarioName[/Expression]]

Node
/Water/:projectName/NodeType[/:nodeName[/VariableType[/:variableName/:scenari
oName[/Expression][?startYear=N&endYear=N&startTimeStep=N&endTimeStep=N]]]]

Link

/Water/:projectName/LinkType[/:sourceName/:targetName[/VariableType[/:variabl
eName/:scenarioName[/Expression][?startYear=N&endYear=N&startTimeStep=N&endTi
meStep=N]]]]

Flow

/Water/:projectName/FlowType[/:flowName[/subNodeType[/:subNodeName]][/Variabl
eType[/:variableName/:scenarioName[/Expression][?&startYear=N&endYear=N&start
TimeStep=N&endTimeStep=N]]]]

Table 2. Type-Values for the patterns of the APIs.

Type Values

NodeType Catchments, DemandSites, Groundwaters, Reservoirs, OtherSupplies, WastewaterTreatments

LinkType Transmissions, Runoffs, ReturnFlows

FlowType Rivers, Diversions

VariableType Inputs, Outputs

subNodeType Reaches, Reservoirs, RunOfRiverHydros, StreamflowGauges, FlowRequirements

All the URLs contain http://(hostname):(port). In our examples, the hostname is “localhost”, and the port is “8080”.

To test the APIs, the WEAP system and the C-WEAP RESTful framework run, first. Then the APIs are called by the

Postman tool. Also, the “Weaping River Basin” project is using as the WEAP's project to test the APIs. The Schematic

view of this project is presented in Figure 14.

The C-WEAP framework always checks the existence of all parameters (e.g. :projectName, :variableName, etc.) in

the URL. For example, the C-WEAP framework first checks the existence of the project “Weaping River Basin”, then

the river “Nile”, then the input variable “Headflow”, and finally the scenario “Current Accounts” in the URL

”http://localhost:8080/Water/Weaping%20River%20Basin/Rivers/Nile/Inputs/Headflow/Current%20Acc

ounts”. The corresponding error message (with status code 404) will return in the case of not existing a parameter.

Also, for updating APIs, the new values must be set in the body of the request for the URL with PUT methods.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 12

Figure 14. The "Weaping River Basin" project in the WEAP system.

Any application can be used to call the APIs (for example, typing a URL in the address bar of a web-browser and

hitting the Enter for the GET type requests), but we use the Postman tool (see https://www.postman.com/). As shown

in Figure 15, the API method, the URL, the parameters, and the body of the request (for PUT requests) can specify in

the Postman (and some other features that we are not going to use them).

Figure 15. The Postman tool environment.

Note: Using an incorrect URL makes “404 Not Found” response (incorrect hostname, port, constant, etc. in the URL).

For example, Figure 16 shows the situation that the URL entered “http://localhost:8080/Watter” by mistake. It

shows the message “Cannot GET /Watter” in the web-browser. Indeed, it is requesting an API that is not defined in

the webserver.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://www.postman.com/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 13

Figure 16. Calling an incorrect URL ("/Watter") in the Postman.

Figure 17 presents individual domain model classes defined in the C-WEAP framework for receiving/sending data

from/to the API caller.

Figure 17. Domain Model classes in the C-WEAP framework.

6.1. Project

The C-WEAP’s APIs related to the Project category are listed in Table 3.

Table 3. List of APIs for the Project module.

Method URL
Return

Value/s
Description

P1 GET /Water String[] Get the name of all projects

P2 GET /Water/:projectName Project Get properties of a project

P3 GET /Water/:projectName/Run Boolean Run a project

P4 PUT /Water/:projectName Boolean

Update properties of a project,

by setting new values for the

Project object in the body of

the request

Example: As an example, the API P1 from Table 3 is presented here. Figure 18 shows the available projects in the

WEAP system. Calling the URL “http://localhost:8080/Water” in Postman (or web browser) returns the project

names while the C-WEAP is running (see Figure 19). The list of projects shown in vary depending on the projects

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 14

that are available in the WEAP system. It is shown in the Postman that the status of the request is “200 OK”, the time

to get data is “128 ms” (which can be different in different calls), and the size of the response is “361 Byte”. The time

and response time measurements can vary depending on the host computer and other factors.

Figure 18. The projects in the WEAP system.

Figure 19. Calling the URL "/Water" in the Postman.

6.2. Version

The C-WEAP’s APIs related to the Version category are listed in Table 4. The name of the version is the concatenated

of the date and name properties of the Version class in Figure 17.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 15

Table 4. List of APIs for the Version module.

Method URL
Return

Value/s
Description

V1 GET /Water/:projectName/Versions Version[]
Get the list of all versions of a

project

V2 GET
/Water/:projectName/Versions/:versionNam
e

Version Get a version of a project

V3 PUT
/Water/:projectName/Versions/:versionNam
e/Revert

Boolean
Revert to a version for a

project

Example: As an example, the API V1 from Table 4 is presented here. Figure 20 shows the available versions defined

in the “Weaping River Basin” project in the WEAP system. Calling the URL

“http://localhost:8080/Water/Weaping%20River%20Basin/Versions” in Postman (or web browser) returns the

list of versions for the project, ordered by ascending on the date (see Figure 21).

Figure 20. The versions of "Weaping River Basin" project in the WEAP system.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 16

Figure 21. Calling the URL "/Water/Weaping%20River%20Basin/Versions" in the Postman.

6.3. Key

The C-WEAP’s APIs related to the Key category are listed in Table 5.

Table 5. List of APIs for the Key module.

Method URL
Return

Value/s
Description

K1 GET /Water/:projectName/Keys String[]
Get the list of all keys in a

project

K2 GET
/Water/:projectName/Keys/:keyName/:scena
rioName[?&startYear=N&endYear=N&startTim
eStep=N&endTimeStep=N]

Interval[]
Get a list of all values of a key

in a project

K3 GET
/Water/:projectName/Keys/:keyName/:scena
rioName/Expression

String
Get the expression of a key in

a project

K4 PUT
/Water/:projectName/Keys/:keyName/:scena
rioName

Boolean

Update the values of a key in a

project, by setting new values

in the body of the request

K5 PUT
/Water/:projectName/Keys/:keyName/:scena
rioName/Expression

Boolean

Update the expression of a key

in a project, by setting new

value in the body of the

request

Example: As an example, the API K5 from Table 5 is presented here. Figure 22 shows the value of the “Efficiency

Improvements” key defined in the “Weaping River Basin” project for “Reference” scenario in the WEAP system. We

sare going to change the value. So, by calling the URL

“http://localhost:8080/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/

Expression” and set the body of the request to {“value”:”3.5”} in Postman (see Figure 23). This URL will change

the current value of the Efficiency Improvements to 3.5 (see Figure 24), and returns true if the API executes

successfully.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 17

Figure 22. The Efficiency Improvements key in the "Weaping River Basin" project in the WEAP system.

Figure 23. Calling the URL

"/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression " in the

Postman.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 18

Figure 24. The key changing in the "Weaping River Basin" project after using the URL in Figure 23.

6.4. Node

The C-WEAP’s APIs related to the Node category are listed in Table 6. As mentioned before, one of the values from

Table 2 (Node Type) must be replaced with the NodeType in the URLs in Table 6.

Table 6. List of APIs for the Node module.

Method URL
Return

Value/s
Description

N1 GET /Water/:projectName/NodeType Node[]
Get the list of all nodeType

components in a project

N2 GET /Water/:projectName/NodeType/:nodeName Node
Get a nodeType component in

a project

N3 GET
/Water/:projectName/NodeType/:nodeName/I
nputs

Variable[]

Get a list of all input variables

of a nodeType component in a

project

N4 GET
/Water/:projectName/NodeType/:nodeName/I
nputs/:variableName

Variable

Get an input variable of a

nodeType component in a

project

N5 GET

/Water/:projectName/NodeType/:nodeName/I
nputs/:variableName/:scenarioName[?&star
tYear=N&endYear=N&startTimeStep=N&endTim
eStep=N]

Interval[]

Get a list of all values of an

input variable of a nodeType

component in a project

N6 GET
/Water/:projectName/NodeType/:nodeName/I
nputs/:variableName/:scenarioName/Expres
sion

String

Get the expression of an input

variable of a nodeType

component in a project

N7 PUT
/Water/:projectName/NodeType/:nodeName/I
nputs/:variableName/:scenarioName

Boolean

Update the values of an input

variable of a nodeType

component in a project, by

setting new values in the body

of the request

N8
PUT

/Water/:projectName/NodeType/:nodeName/I
nputs/:variableName/:scenarioName/Expres
sion

Boolean

Update the expression of an

input variable of a nodeType

component in a project, by

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 19

setting new value in the body

of the request

N9 GET
/Water/:projectName/NodeType/:nodeName/O
utputs

Variable[]

Get a list of all output

variables of a nodeType

component in a project

N10 GET
/Water/:projectName/NodeType/:nodeName/O
utputs/:variableName

Variable

Get an output variable of a

nodeType component in a

project

N11 GET

/Water/:projectName/NodeType/:nodeName/O
utputs/:variableName/:scenarioName[?&sta
rtYear=N&endYear=N&startTimeStep=N&endTi
meStep=N]

Interval[]

Get a list of all values of an

output variable of a nodeType

component in a project

Note: The returned values for APIs N5 and N11 can be filtered using query parameters. It means, adding the

“?&startYear=N&endYear=N&startTimeStep=N&endTimeStep=N” at the end of the URL.

Example: As an example, the API N3 from Table 6 for the DemandSite is presented here. Figure 25 shows the input

variables of the “South City” demand site in the "Weaping River Basin" project in the WEAP system. Calling the URL

“http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/South%20City/Inputs” in Postman

(or web browser) returns the list of variables (see Figure 26).

Figure 25. The input variables of the “South City” demand site in the "Weaping River Basin" project in the

WEAP system.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 20

Figure 26. Calling the URL "/Water/Weaping%20River%20Basin/DemandSites/South%20City/

Inputs/Monthly%20Variation/Current%20Accounts?&startYear=2000&endYear=2000" in the Postman.

6.5. Link

The C-WEAP’s APIs related to the Link category are listed in Table 7. As mentioned before, one of the values from

Table 2 (Link Type) must be replaced with the LinkType in the URLs in Table 7.

Table 7. List of APIs for the Node module.

Method URL
Return

Value/s
Description

L1 GET /Water/:projectName/LinkType Link[]
Get the list of all linkType

components in a project

L2 GET
/Water/:projectName/LinkType/:sourceName
/:targetName

Link
Get a linkType component in a

project

L3 GET
/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs

Variable[]

Get a list of all input variables

of a linkType component in a

project

L4 GET
/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName

Variable

Get an input variable of a

linkType component in a

project

L5 GET

/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName/:scena
rioName[?&startYear=N&endYear=N&startTim
eStep=N&endTimeStep=N]

Interval[]

Get a list of all values of an

input variable of a linkType

component in a project

L6 GET
/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName/:scena
rioName/Expression

String

Get the expression of an input

variable of a linkType

component in a project

L7 PUT
/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName/:scena
rioName

Boolean

Update the values of an input

variable of a linkType

component in a project, by

setting new values in the body

of the request

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 21

L8 PUT
/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName/:scena
rioName/Expression

Boolean

Update the expression of an

input variable of a linkType

component in a project, by

setting new value in the body

of the request

L9 GET
/Water/:projectName/LinkType/:sourceName
/:targetName/Outputs

Variable[]

Get a list of all output

variables of a linkType

component in a project

L10 GET
/Water/:projectName/LinkType/:sourceName
/:targetName/Outputs/:variableName

Variable

Get an output variable of a

linkType component in a

project

L11 GET

/Water/:projectName/LinkType/:sourceName
/:targetName/Outputs/:variableName/:scen
arioName[?&startYear=N&endYear=N&startTi
meStep=N&endTimeStep=N]

Interval[]

Get a list of all values of an

output variable of a linkType

component in a project

Note: Like Node APIs, filtering can be applied to the link APIs L5 and L11 in Table 7.

Example: As an example, the API L11 from Table 7 for the DemandSite is presented here. Figure 27 shows the

“Water Demand” output variable for the “Reference” scenario of the "Weaping River Basin" project in the WEAP

system. Calling the URL

“http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/South%20City/

Outputs/Water%20Demand/Reference?&startYear=2002&endYear=2002” in Postman (or web browser) returns the

list of intervals filtered for the year 2002 (see Figure 28).

Figure 27. The “Water Demand” output variable of the demand sites for the “Reference” scenario of the

"Weaping River Basin" project in the WEAP system.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 22

Figure 28. Calling the URL "/Water/Weaping%20River%20Basin/DemandSites/South%20City/

Outputs/Water%20Demand/Reference?&startYear=2002&endYear=2002" in the Postman.

6.6. Flow

The C-WEAP’s APIs related to the Flow category are listed in . As mentioned before, one of the values from Table 2

(Flow Type) must be replaced with the FlowType in the URLs in .

Table 8. List of APIs for the Node module.

Method URL
Return

Value/s
Description

F1 GET /Water/:projectName/FlowType Node[]
Get the list of all flowType

components in a project

F2 GET /Water/:projectName/FlowType/:flowName Node
Get a flowType component in

a project

F3 GET
/Water/:projectName/FlowType/:flowName/I
nputs

Variable[]
Get a list of all input variables

of a flowType component in a

project

F4 GET
/Water/:projectName/FlowType/:flowName/I
nputs/:variableName

Variable
Get an input variable of a

flowType component in a

project

F5 GET

/Water/:projectName/FlowType/:flowName/I
nputs/:variableName/:scenarioName[?&star
tYear=N&endYear=N&startTimeStep=N&endTim
eStep=N]

Interval[]
Get a list of all values of an

input variable of a flowType

component in a project

F6 GET
/Water/:projectName/FlowType/:flowName/I
nputs/:variableName/:scenarioName/Expres
sion

String
Get the expression of an input

variable of a flowType

component in a project

F7 PUT
/Water/:projectName/FlowType/:flowName/I
nputs/:variableName/:scenarioName

Boolean

Update the values of an input

variable of a flowType

component in a project, by

setting new values in the body

of the request

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 23

F8 PUT
/Water/:projectName/FlowType/:flowName/I
nputs/:variableName/:scenarioName/Expres
sion

Boolean

Update the expression of an

input variable of a flowType

component in a project, by

setting new value in the body

of the request

F9 GET
/Water/:projectName/FlowType/:flowName/O
utputs

Variable[]
Get a list of all output

variables of a flowType

component in a project

F10 GET
/Water/:projectName/FlowType/:flowName/O
utputs/:variableName

Variable
Get an output variable of a

flowType component in a

project

F11 GET

/Water/:projectName/FlowType/:flowName/O
utputs/:variableName/:scenarioName[?&sta
rtYear=N&endYear=N&startTimeStep=N&endTi
meStep=N]

Interval[]
Get a list of all values of an

output variable of a flowType

component in a project

F12 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType

Node[]

Get the list of all subNodeType

components in a flowType

components in a project

F13 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName

Node

Get a subNodeType

component of a flowType

component in a project

F14 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs

Variable[]

Get a list of all input variables

of a subNodeType component

of a flowType component in a

project

F15 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name

Variable

Get an input variable of a

subNodeType component of a

flowType component in a

project

F16 GET

/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name/:scenarioName[?&startYear=N&endYear
=N&startTimeStep=N&endTimeStep=N]

Interval[]

Get a list of all values of an

input variable of a

subNodeType component of a

flowType component in a

project

F17 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name/:scenarioName/Expression

String

Get the expression of an input

variable of a subNodeType

component of a flowType

component in a project

F18 PUT
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name/:scenarioName

Boolean

Update the values of an input

variable of a subNodeType

component of a flowType

component in a project, by

setting new values in the body

of the request

F19 PUT
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name/:scenarioName/Expression

Boolean

Update the expression of an

input variable of a

subNodeType component of a

flowType component in a

project, by setting new value in

the body of the request

F20 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Outputs

Variable[]

Get a list of all output

variables of a subNodeType

component of a flowType

component in a project

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 24

F21 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Outputs/:variabl
eName

Variable

Get an output variable of a

subNodeType component of a

flowType component in a

project

F22 GET

/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Outputs/:variabl
eName/:scenarioName[?&startYear=N&endYea
r=N&startTimeStep=N&endTimeStep=N]

Interval[]

Get a list of all values of an

output variable of a

subNodeType component of a

flowType component in a

project

Note: Like Node and Link APIs, filtering can be applied on the Flow APIs F5, F11, F16, and F22 in .

Example: As an example, the API F12 from for the Rivers FlowType and Reservoirs for the subNodeType is

presented here. Figure 14 shows the Schematic view for the "Weaping River Basin" project in the WEAP system. As

can be seen, there are two reservoirs on the “Weaping River” river. Calling the URL

“http://localhost:8080/Water/Weaping%20River%20Basin/Rivers/Weaping%20River/Reservoirs” in

Postman (or web browser) returns the list of nodes (shown in Figure 29).

Figure 29. Calling the URL "/Water/Weaping%20River%20Basin/Rivers/Weaping%20River/Reservoirs" in

the Postman.

6.7. A simple example

The following is an example illustrating using the C-WEAP framework for making changes to the “Weaping River

Basin“ model’s configuration, reaching to an optimal solution.

Problem: Given the default “Weaping River Basin“ project, what is the optimal value for the “Efficiency

Improvements“ key value to have the “Water Demand“ result for the “West City“ demand site in the year 2020 between

495,000,000 m3 and 505,000,000 m3 (500,000,000 ± 1%).

6.7.1. Model configuration

Based on the WEAP’s calculation, the “Water Demand” result for a demand site uses the “Annual Activity Level” and

“Annual Water Use Rate” input values. In the “Reference” scenario of the project, the “Annual Water Use Rate” is

using the “Technical Innovation” key, and the “Technical Innovation“ key is using the “Efficiency Improvements“ key

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 25

to define the input data (the default value for the “Efficiency Improvements” key is 2). Using these value, the “Water

Demand” is calculated by changing the “Efficiency Improvements” value.

6.7.2. Simulation Execution

The basic algorithm presented in Figure 30 to find the optimal “Efficiency Improvements” for the defined problem

based on using different APIs from the C-WEAP framework. In step 1, the water demand is to be determined (calculate

the optimal range for the “Water Demand”) for the water demand ranging from 495,000,000 (WDlower_bound) to

505,000,000 (named WDupper_bound) values. In step 2, the default key “Efficiency Improvements” value is read from the

WEAP system by calling the K3 API from the C-WEAP (http://localhost:8080/Water/Weaping%20

River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression). In step 3, the WEAP is executed

(i.e., simulated) using the P3 (http://localhost:8080/Water/Weaping%20River%20Basin/Run). In step 4, the

“Water Demand” result values for the demand site “West City” and scenario “Reference” for year 2020 are read using

the N11 API from the C-WEAP (http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/

West%20City/Outputs/Water%20Demand/Reference?StartYear=2020&endYear=2020). Also, in this step, the sum

of the water demand for year 2020 must be calculated (called WD2020), because the return type of calling N11 is an

array of the Intervals for all time-steps values.

Figure 30. The flowchart to solve the defined problem in section 6.7 to find optimal efficiency.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 26

In step 5, the WD2020 is checked to be in the optimal water demand range (between WDlower_bound and WDupper_bound). If

the WD2020 is in the optimal range, the current “Efficiency Improvements” value is returned as the result, in step 6.

Otherwise, the “Efficiency Improvements” key value must be checked to be decreased/increased using a simple

evaluation of the WD2020 value to be smaller/larger than the WDlower_bound/WDupper_bound value, in step 7. In steps 8/steps

9, the decrease/increase amounts for the “Efficiency Improvements” is calculated. In step 10, the new value for the

“Efficiency Improvements” updates using the K5 API from the C-WEAP (http://localhost:8080/Water/

Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression) and then the algorithm

returns to step 3. The algorithm is expected to terminate with an optimal value for the “Efficiency Improvements”.

In this simulation execution, a value 𝑘 for changing the “Efficiency Improvements” (if the current DW2020 value is out

of the acceptance range) is set initially. Then, the 𝑘 value is divided by 2 if DW2020 value is outside the acceptance

range defined for the “Water Demand”. For example, suppose the current DW2020 is larger than WDupper_bound, then the

value of the “Efficiency Improvements” will increase by 𝑥 and the WEAP system is executed. Now, suppose the

DW2020 is smaller than WDlower_bound, so the value of “Efficiency Improvements” will decrease by
𝑥

2
 and the WEAP

system is executed.

6.7.3. Model Implementation

A Java maven application is used to implement the illustrated algorithm in Figure 30. Also, the Jersey framework is

used to define the RESTful API for the Java application. The full implementation is presented in Appendix B. In the

source code, lines 1 to 84 are the implementation for the algorithm in Figure 30. Lines 85 to 207 are the RESTful API

(using Jersey framework) for the Project, Key, and Node categories. Finally, lines 208 to 312 are the classes to define

the required domain models.

6.7.4. Simulation Results

A set of suitable values should be selected for 𝑘, the amounts by which is to be changed as long as the water demand

is outside of the desired range. Three changing steps equal to 0.4, 1, and 2 are selected. The results and the trends of

water demand to reach the desired ranges for three configurations are shown in Figure 31. The “Efficiency

Improvements” is initialized to 2 and the WD2020 is 595,415,306.79 m3. In Figure 31(a) the “Efficiency Improvements”

increases by 0.4 through the sixth simulation cycle for the WD2020 to smaller than WDlower_bound. For the seventh

simulation cycle, the “Efficiency Improvements” decreases by 0.2. The result is the WD2020 falls within the acceptance

range (499,859,761.56 m3) with the final efficiency improvement equal to 3.8. Different results are shown in Figure

31(b) and (c) for changing steps 1 and 2, respectively. For both settings, the optimal efficiency improvement is 3.75.

The desired range for the “Water Demand” values (495,000,000 to 505,000,000) is shown in the green areas in Figure

31(b) and (c).

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 27

(a)

(b)

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 28

(c)

Figure 31. The result of running simulation with different changing step values (a) changing step equals 0.4 unit,

(b) changing step equals 1 unit, (c) changing step equals 2 unit.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 29

References

[1] ACIMS, "Componentized-WEAP RESTful Framework," 20 June 2020. [Online]. Available:

https://acims.asu.edu/software/c-weap. [Accessed 20 June 2020].

[2] M. D. Fard and H. S. Sarjoughian, "A Web-service Framework for the Water Evaluation and Planning System,"

Spring Simulation Conference (SpringSim), pp. 1-12, 2019.

[3] M. D. Fard and H. S. Sarjoughian, "Coupling WEAP and LEAP Models using Interaction Modeling," in

SpringSim Conference, Fairfax, VA, USA, 2020.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 30

Appendix A

The WEAP’s APIs used in developing the Componentized-WEAP framework

API Return Object Category

1 WEAP.ActiveArea Area

WEAP

2 WEAP.ActiveArea.Name String

3 WEAP.WaterYearStart Integer

4 WEAP.ActiveScenario Scenario

5 WEAP.BaseYear Integer

6 WEAP.EndYear Integer

7 WEAP.TimeStepName(Id) String

8 WEAP.NumTimeSteps Integer

9 WEAP.View String

10 WEAP.Calculate(LastYear, LastTimestep, AlwaysCalculate) -

11
WEAP.ResultValue(BranchName:VariableName, Year, TimeStep,

ScenarioName) Double

12 WEAP.Areas(Id) Area[]
Area

13 WEAP.Areas.Count Integer

14 WEAP.Versions.Count Integer

Version

15 WEAP.Versions(Name/Id) Version

16 WEAP.Versions.Exist(VersionName) Boolean

17 WEAP.SaveVersion(VersionName) -

18 WEAP.Versions(VersionName).Revert() -

19 WEAP.Scenarios(Id) Scenario[]

Scenario
20 WEAP.Scenarios.Exists(ScenarioName) Boolean

21 WEAP.Scenarios.Add(ScenarioName) -

22 WEAP.Scenarios(ScenarioName).Delete() -

23 WEAP.Branch(BranchName) Branch

Branch

24 WEAP.BranchExists(BranchName) Boolean

25 WEAP.Branch(BranchName).Children Branch[]

26 WEAP.Branch(BranchName).Variables Variable[]

27 WEAP.Branch(BranchName).Variables.Exists(VariableName) Boolean

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 31

Appendix B

public class App 1

{ 2

 public static void main(String[] args) { 3

 OEIC oeic= new OEIC("Weaping River Basin", 500000000, 5000000, 2); 4

 oeic.calculate(); 5

 } 6

} 7

// OEIC stands for Optimal Efficiency Improvement Calculator 8

public class OEIC { 9

 private String _projectName = null; 10

 private double _changeEfficiencyValue = 0; 11

 12

 private double _startWD = 0; 13

 private double _endWD = 0; 14

 15

public OEIC(String projectName, double optimalEfficiency, double efficiencyThreshold, double changeEff16

iciencyValue) { 17

 this._projectName = projectName; 18

 this._changeEfficiencyValue = changeEfficiencyValue; 19

 20

 this._startWD = optimalEfficiency - efficiencyThreshold; 21

 this._endWD = optimalEfficiency + efficiencyThreshold; 22

 } 23

 24

 public double calculate() { 25

 WaterService waterService = new WaterService(); 26

 waterService.run(this._projectName); 27

 28

 KeyService keyService = new KeyService(this._projectName); 29

 NodeService nodeService = new NodeService(this._projectName,ComponentTypes.DemandSite); 30

 31

double efficiencyValue = Double.valueOf(keyService.getExpression("Efficiency Improvements", "Refer32

ence")); 33

Interval[] waterDemandValues = nodeService.getOutputValues("West City", "Water Demand", "Reference34

", new FilterParams(2020, 2020)); 35

 double sum2020 = this.getSum(waterDemandValues); 36

 37

 double changeEfficiency = this._changeEfficiencyValue; 38

 boolean isBigger = false; 39

 if (sum2020 > this._endWD) 40

 isBigger = true; 41

 42

 while ((sum2020 < this._startWD) || (sum2020 > this._endWD)) { 43

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 32

 if (sum2020 < this._startWD) { 44

 if (isBigger) { 45

 changeEfficiency /= 2; 46

 isBigger = false; 47

 } 48

 49

 efficiencyValue -= changeEfficiency; 50

 } 51

 else { 52

 if (!isBigger) { 53

 changeEfficiency /= 2; 54

 isBigger = true; 55

 } 56

 57

 efficiencyValue += changeEfficiency; 58

 } 59

 60

 keyService.setExpression("Efficiency Improvements", "Reference", String.valueOf(efficiencyValu61

e)); 62

 63

 waterService.run(this._projectName); 64

 65

waterDemandValues = nodeService.getOutputValues("West City", "Water Demand", "Reference", new 66

FilterParams(2020, 2020)); 67

 sum2020 = this.getSum(waterDemandValues); 68

 } 69

 70

 return efficiencyValue; 71

 } 72

 73

 private double getSum(Interval[] values) { 74

 double result = 0; 75

 for (Interval interval : values) { 76

 for (Data data : interval.getData()) { 77

 result += data.getValue(); 78

 } 79

 } 80

 return result; 81

 } 82
} 83

public abstract class AbstractWebService { 84

 private static final String SYSTEM = "Water"; 85

 private String projectName = ""; 86

 private ComponentTypes componentType = null; 87

 88

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 33

 public AbstractWebService() { 89

 } 90

 91

 public AbstractWebService(String projectName, ComponentTypes componentType) { 92

 this.projectName = projectName.replaceAll("\\s", "%20"); 93

 this.componentType = componentType; 94

 } 95

 96

 private URI getBaseUrl() { 97

 UriBuilder uri = UriBuilder.fromUri("http://localhost:8080/" + SYSTEM); 98

 if (this.componentType != null) 99

 uri.path(this.projectName).path(this.componentType.getTitle()); 100

 return uri.build(); 101

 } 102

 103

 protected <T> T Get(Class<T> type) { 104

 return this.Get(type, "", null); 105

 } 106

 107

 protected <T> T Get(Class<T> type, String path) { 108

 return this.Get(type, path, null); 109

 } 110

 111

 protected <T> T Get(Class<T> type, String path, FilterParams filters) { 112

 path = path.replaceAll("\\s", "%20"); 113

 if (filters != null) { 114

 path += this.getQueryParameters(filters); 115

 } 116

 String url = this.getBaseUrl() + path; 117

 Builder builder = ClientBuilder.newClient().target(url).request(MediaType.APPLICATION_JSON); 118

 Response res = builder.get(); 119

 120

 return res.readEntity(type); 121

 } 122

 123

 protected boolean Put(String path, Object values) { 124

 String url = this.getBaseUrl() + path.replaceAll("\\s", "%20"); 125

 Builder builder = ClientBuilder.newClient().target(url).request(MediaType.APPLICATION_JSON); 126

 Response res = builder.put(Entity.entity(values, MediaType.APPLICATION_JSON), Response.class); 127

 128

 return res.readEntity(boolean.class); 129

 } 130

 131

 private String getQueryParameters(FilterParams filters) { 132

 String start = "?"; 133

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 34

 String result = start; 134

 135

 if (filters.getStartYear() != 0) { 136

 if (result == start) 137

 result += "startYear=" + filters.getStartYear(); 138

 else 139

 result += "&startYear=" + filters.getStartYear(); 140

 } 141

 142

 if (filters.getEndYear() != 0) { 143

 if (result == start) 144

 result += "endYear=" + filters.getEndYear(); 145

 else 146

 result += "&endYear=" + filters.getEndYear(); 147

 } 148

 149

 if (filters.getStartTimeStep() != 0) { 150

 if (result == start) 151

 result += "startTimeStep=" + filters.getStartTimeStep(); 152

 else 153

 result += "&startTimeStep=" + filters.getStartTimeStep(); 154

 } 155

 156

 if (filters.getEndTimeStep() != 0) { 157

 if (result == start) 158

 result += "endTimeStep=" + filters.getEndTimeStep(); 159

 else 160

 result += "&endTimeStep=" + filters.getEndTimeStep(); 161

 } 162

 163

 return result; 164

 } 165

} 166

public class WaterService extends AbstractWebService { 167

 public WaterService() { 168

 super(); 169

 } 170

 171

 public boolean run(String projectName) { 172

 String path = "/" + projectName + "/Run"; 173

 return (boolean) super.Get(boolean.class, path); 174

 } 175

} 176

public class KeyService extends AbstractWebService { 177

 public KeyService(String projectName) { 178

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 35

 super(projectName, ComponentTypes.Key); 179

 } 180

 181

 public String getExpression(String compName, String scenarioName) { 182

 String path = "/" + compName + "/" + scenarioName + "/Expression"; 183

 String temp = super.Get(String.class, path); 184

 return (String) temp.substring(1, temp.length() - 1); 185

 } 186

 187

 public boolean setExpression(String compName, String scenarioName, String expression) { 188

 String path = "/" + compName + "/" + scenarioName + "/Expression"; 189

 return super.Put(path, new ExpressionValue(expression)); 190

 } 191

} 192

public class NodeService extends AbstractWebService { 193

 public NodeService(String projectName, ComponentTypes componentType) { 194

 super(projectName, componentType); 195

 } 196

 197

public Interval[] getOutputValues(String compName, String portName, String scenarioName, FilterParams 198

filters) { 199

 String path = "/" + compName + "/Outputs/" + portName + "/" + scenarioName; 200

 return (Interval[]) super.Get(Interval[].class, path, filters); 201

 } 202

} 203

public class Interval { 204

 private int year; 205

 private List<Data> data; 206

 207

 public Interval() { 208

 this.data = new ArrayList<>(); 209

 } 210

 211

 public int getYear() { 212

 return year; 213

 } 214

 215

 public void setYear(int year) { 216

 this.year = year; 217

 } 218

 219

 public List<Data> getData() { 220

 return data; 221

 } 222

 223

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 36

 public void addData(Data data) { 224

 this.data.add(data); 225

 } 226

 227

 public void addData(List<Data> data) { 228

 this.data.addAll(data); 229

 } 230

} 231

public class Data { 232

 private int timeStep; 233

 private double value; 234

 235

 public Data() { 236

 } 237

 238

 public Data(int timeStep, double value) { 239

 this.timeStep = timeStep; 240

 this.value = value; 241

 } 242

 243

 public int getTimeStep() { 244

 return timeStep; 245

 } 246

 247

 public double getValue() { 248

 return value; 249

 } 250

 251

 public void setValue(double value) { 252

 this.value = value; 253

 } 254

 255

 public void setTimeStep(int timeStep) { 256

 this.timeStep = timeStep; 257

 } 258

} 259

public class FilterParams { 260

 private int startYear; 261

 private int endYear; 262

 private int startTimeStep; 263

 private int endTimeStep; 264

 265

 public FilterParams(int startYear, int endYear) { 266

 this(startYear, endYear, 0, 0); 267

 } 268

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.0 37

 269

 public FilterParams(int startYear, int endYear, int startTimeStep, int endTimeStep) { 270

 this.setStartYear(startYear); 271

 this.setEndYear(endYear); 272

 this.setStartTimeStep(startTimeStep); 273

 this.setEndTimeStep(endTimeStep); 274

 } 275

 276

 public int getStartYear() { 277

 return startYear; 278

 } 279

 280

 public void setStartYear(int startYear) { 281

 this.startYear = startYear; 282

 } 283

 284

 public int getEndYear() { 285

 return endYear; 286

 } 287

 288

 public void setEndYear(int endYear) { 289

 this.endYear = endYear; 290

 } 291

 292

 public int getStartTimeStep() { 293

 return startTimeStep; 294

 } 295

 296

 public void setStartTimeStep(int startTimeStep) { 297

 this.startTimeStep = startTimeStep; 298

 } 299

 300

 public int getEndTimeStep() { 301

 return endTimeStep; 302

 } 303

 304

 public void setEndTimeStep(int endTimeStep) { 305

 this.endTimeStep = endTimeStep; 306

 } 307

} 308

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

