

Componentized-WEAP RESTful Framework
Installation and User Guide*

Version 1.1**

Mostafa D. Fard

Hessam S. Sarjoughian***

Arizona Center for Integrative Modeling and Simulation
School of Computing, Informatics, and Decision System Engineering

Arizona State University, Tempe, Arizona, USA
https://acims.asu.edu

July 2023

* Funding: United States National Science Foundation Grant #CNS-1639227, “INFEWS/T2: Flexible Model Compositions and Visual
Representations for Planning and Policy Decisions at the Sub-regional level of food-energy-water nexus”.

** Version 1.1 has changes for the latest versions of software tools and improved readability. There are no changes to the C-WEAP API
specification and code base. This version replaces version 1.0 which released in July 2020.

*** Point-of-Contact

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 2

1. Componentized-WEAP Software Application
The Componentized-WEAP (C-WEAP) is a RESTful framework application [1] written in NodeJS for the Water
Evaluation and Planning (WEAP) system [2, 3]. The executable version of this software is publicly available. It can
be used as if it is running from source code. A short demo video is also available.

2. WEAP Software System
WEAP is a propriety system software that runs on the Windows 32 OS. Information on licensing this software is
available at WEAP Licensing.

3. Executable Componentized-WEAP Software Application Installation
The executable version of the Componentized-WEAP (C-WEAP) framework is a standalone application to be run on
the Windows OS. Download the executable version of the C-WEAP framework must from
https://acims.asu.edu/software/c-weap/ and unzip the downloaded file in a directory. It contains the “workspace”
folder (which manages the required flat files needed by the C-WEAP framework and WEAP system), the “config.json”
file (to set the host and port number of the web-service), and the C-WEAP.exe file. All required libraries and
frameworks (NodeJS, Express, etc.) are embedded in this executable file. The unzipped downloaded file must not be
installed on any shared disk drive such as Dropbox.

To run the C-WEAP, double-click on the C-WEAP.exe file. Upon the successful execution of the C-WEAP
application, the message “Componentized-WEAP is listening at http://{hostname}:{port}” appears in the
first line of a Command Prompt console such as the one shown in Figure 1.

Figure 1. Windows console displaying the successful execution of the C-WEAP.

The C-WEAP can invoke a defined set of WEAP system APIs following the procedure described and exemplified in
Section 6.

4. Componentized-WEAP Source Code Installation
The following software frameworks and tools need to be installed for executing the C-WEAP software application
from the source code.

4.1. NodeJS
Download the NodeJS framework for the Windows 64-bit OS (MSI or ZIP) from https://nodejs.org/en/download/ (see
Figure 2). At the time of preparing this user guide, the latest version of the NodeJS framework is 18.16.1. It also
includes npm 9.5.1 (Node Package Management). After downloading, use the default choices to install NodeJS.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://www.weap21.org/index.asp
https://acims.asu.edu/c-weap-20200720/
https://acims.asu.edu/wp-content/uploads/2021/12/Short-C-WEAP-Demo.mp4
https://www.weap21.org/index.asp?action=217
https://acims.asu.edu/software/c-weap/
https://nodejs.org/en/download/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 3

Figure 2. NodeJS download page (https://nodejs.org/en/download/).

4.2. Python
Installing Python requires multiple installations in the order provided below.

Download and install (run as administrator) Python from https://www.Python.org/downloads/. (current version is
3.11.4)

As shown in Figure 3, select customize installation in the first window. Then, leave the default selections and click on
the next button. Finally, make sure to check the “Add Python to environment variables” option, set a proper location
and click on the install button.

(a) select Customize installation (b) Leave the default selections

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://www.python.org/downloads/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 4

(c) check “Add Python to environment variables”

Figure 3. Install Python.

Note: Check the Python installation by running “Python --version” in the command prompt. The version of the
installed Python must be printed. If it does not show anything, the Python path must be added to the system
environment variables (as shown in Figure 4).

Figure 4. Python path in the system variables.

4.3. TypeScript
Run the following commands using the Windows Command Prompt (cmd) as follows:

Step 1: npm install typescript --global

Step 2: npm install node-gyp --global

Run the following command using Windows PowerShell (run as administrator)

Step 1: npm install --global --production windows-build-tools

Note: Download & Install Visual C++ from here if there is an error in executing the previous step. Also, this step may
take a long time (e.g., ~15-30 minutes) and further require multiple runs.

4.4. Git
Download and install the Git version control from https://git-scm.com/downloads. At the time of preparing this user
guide, the latest version is 2.41.0. Use the default choices in the installation steps.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://git-scm.com/downloads

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 5

Figure 5. Git download page.

4.5. VS-Code
Different IDEs can be used for code development. We recommend the VS-Code editor, and it is used in the rest of
this User Guide. Download the Windows version of the VS-Code from https://code.visualstudio.com/Download. Use
the default choices in the installation steps.

Figure 6. VS-Code Editor download page.

After installing the VS-Code, some extensions must be installed (e.g., TSLint), and some are recommended to be
installed (e.g., Code Runner). As shown in Figure 7, open the VS-Code editor, go to the extension page, type TSLint,
and click on the install button. The same can be done for the Code Runner extension.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://code.visualstudio.com/Download

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 6

Figure 7. VS-Code editor, extensions page.

Note: The execution policy in the Windows OS Client must be changed to RemoteSigned to be able to run the script.
For more information, see About Execution Policy and Set Execution Policy pages. So, open Windows PowerShell
(run as administrator), and run:

• Set-ExecutionPolicy RemoteSigned

4.6. Download Source Code
To download the C-WEAP framework from GitHub in the VS-Code editor, follow the following steps:

1) Open VS-Code
2) Press CTRL+SHIFT+P (View/Command Palette...) and type “git:Clone”
3) Enter the C-WEAP git URL (https://github.com/comses/ComponentizedWEAP.git); contact hss@asu.edu

for access.
4) Select a folder for the project to be uploaded

After downloading the source code, you should see the folders similar to Figure 8 in the Explorer window of the VS-
Code editor.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/set-executionpolicy?view=powershell-7
https://github.com/comses/ComponentizedWEAP.git
mailto:hss@asu.edu

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 7

Figure 8. The C-WEAP project directory in the VS-Code editor.

4.7. Update the C-WEAP Packages
After downloading the C-WEAP framework for the first time, or after updating any third-party packages (the
dependencies section of the “./package.json” file, see Figure 8), the following steps must be applied to generate
required packages and files.

Step 1: Right-click on the project folder in the Explorer window (or right clock in the blank area of the project in
the Explorer window), and select Open in Terminal (as shown in Figure 9). It will open the terminal windows
of the VS-Code for the C-WEAP project.

Figure 9. Open Terminal for a project in the VS-Code editor.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 8

Step 2: Run the following command in the Terminal. As shown in Figure 10, it will generate the “node_modules”
package in the root directory. The “node_modules” package includes all third-party packages defined in the
dependency section of the “package.json” file.

o npm install

Figure 10. Generating “node_modules” package after each update in the dependencies.

o Step 3: Press [CTRL+SHIFT+B] in VS-Code editor to open the window shown in Figure 11 and select
“tsc: build – tsconfig.json ComponentizedWEAP” or “tsc: watch – tsconfig.json
ComponentizedWEAP”.

Figure 11. Generating js package using typescript engine in VS-Code.

As shown in Figure 12, selecting this option will run a command in the terminal to generate the “js” package
in the root directory. The “Found 0 errors. Watching for ile changes.” message must be printed in
the terminal, and “js” package must be generated successfully.

Note: The C-WEAP framework is written in the TypeScript framework to use facilities which are not available in
JavaScript. Finally, the TypeScript files must be converted to JavaScript files to be able to run on the server using the
NodeJS framework. TypeScript does the conversion automatically using the “./tsconfig.json” file.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 9

Figure 12. Final Componentized WEAP folder structure in VS-Code.

Note: In the C-WEAP RESTful framework, all the TypeScript files are organized under the “./src” folder, and all the
generated JavaScript files are under the “./js” folder (based on the configuration in the tsconfig.json file). Also, the
conversion is from TypeScript to ES6.

4.8. Running the C-WEAP RESTful Framework
Be sure that all changes in the TypeScript files are converted to JavaScript before running the C-WEAP framework.
The configuration to run the project saves in the “./.vscode/launch.json” file. The Run page in the VS-Code editor
has a run button to execute the launch file. As can be seen in Figure 13, all open projects in the VS-Code are listed. A
project must be selected in the drop-down list (e.g., Componentized-WEAP), then click on the start debugging button
() to run it.

Figure 13. Running a project in the VS-Code editor.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 10

As shown in Figure 14, after running the C-WEAP framework, the “Componentized-WEAP is listening at
http://localhost:8080” must be displayed in the DEBUG CONSOLE tab of the editor.

Figure 14. The C-WEAP framework after running in the VS-Code editor.

Note: The WEAP system must be running before running the C-WEAP framework. (Running the C-WEAP prior to
running the WEAP system produces unexpected results).

Note: In some cases, setting “localhost” for the host property in the config.json file does not work correctly. Setting
host property to “[::1]” will solve the problem.

5. Define the C-WEAP Model Configuration
For each WEAP project that is going to be used in the C-WEAP framework, the required configuration files must be
defined under the “Workspace” folder (see Section 3). First, a folder must be defined with the same name as the
WEAP project (called the project folder). The “Inputs.csv” and “Outputs.csv” files must be defined under the
project folder if we need to set some properties of the input and/or output variables of different components. The “Data
Variable Report” form can be used to define the “Inputs.csv”, automatically. To do that, click on the menu items
“Edit->Data Variable->Report“ in the WEAP IDE. As shown in Figure 15, use the “Comma Separated Value
(*.csv)” for the “Save as” property, then store the csv file under the project folder. This csv file has a specific
structure that the C-WEAP framework will parse during run time for extracting the Min, Max, Time Scale, and User
Defined properties for the variables defined for different components (these variables are definable in the WEAP IDE,
but there are not accessible via WEAP APIs). The “Inputs.csv” file has some extra properties (e.g., Category,
Description, etc.), which are not important for the C-WEAP (Just leave them as they are).

The “Outputs.csv” file must be defined by the user, and it has six properties. They are six properties that are used in
the “Inputs.csv” file, as well. The properties are “Branch“ to define the entity type, “Variable“ to define the variable
name, “Min” and “Max” to define the acceptable range for the variable, “Time Scale” to define the time granularity
of the variable, and “User-Defined?” to show that the variable is defined by user or it is a default variable in the
WEAP system. They must be in the presented order (first Branch, then Variable, and so on).

Note: Without defining the inputs.csv/outputs.csv file, all input/output variables will have a Yearly time-step in the
C-WEAP framework.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 11

Figure 15. The C-WEAP framework after running in the VS-Code editor.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 12

6. Modules
The C-WEAP APIs are categorized into six modules related to different parts of the WEAP system or a subset of
WEAP entities. The modules are Project, Version, Key, Node, Link, and Flow. Each module has a set of APIs to
read/write data from/to the WEAP system. The used WEAP APIs to develop the C-WEAP RESTful framework is
listed in Appendix A.

The URL patterns for five API types are shown in Table 1. The pattern inside each open and close pair bracket is
optional. In the pattern of the URLs, constants are written in PascalCase style; parameters start with colons and written
in camelCase style; query parameters (to apply to some filters on returned data) written after the question mark by
Key=Value (camelCase style for the Key part). All URLs start with constant “/Water”. The NodeType, LinkType,
FlowType, VariableType, and subNodeType (which are bold) in the patterns must be replaced by a valid value from
Table 2. In the Flow URLs, the subNodeType uses to access a specific collection of sub-nodes, and then use
:subNodeName to select one. For example, the URL “/Water/demo/DemandSites/phoenix” returns the phoenix
demand site’s data of the demo project. The data of a variable can be retrieved by mentioning the name of the variable
and the intended scenario. Query parameters can be used to filter the returned data (the years and time-steps).

Table 1. URL pattern for different types of APIs.

Category URL Patterns
Project /Water[/:projectName[/Run]]
Version /Water/:projectName/Versions[/:versionName/Revert]

Key /Water/:projectName/Keys[/:KeyName/:scenarioName[/Expression]]

Node /Water/:projectName/NodeType[/:nodeName[/VariableType[/:variableName/:scenari
oName[/Expression][?startYear=N&endYear=N&startTimeStep=N&endTimeStep=N]]]]

Link
/Water/:projectName/LinkType[/:sourceName/:targetName[/VariableType[/:variabl
eName/:scenarioName[/Expression][?startYear=N&endYear=N&startTimeStep=N&endTi
meStep=N]]]]

Flow
/Water/:projectName/FlowType[/:flowName[/subNodeType[/:subNodeName]][/Variabl
eType[/:variableName/:scenarioName[/Expression][?&startYear=N&endYear=N&start
TimeStep=N&endTimeStep=N]]]]

Table 2. Type-Values for the patterns of the APIs.

Type Values
NodeType Catchments, DemandSites, Groundwaters, Reservoirs, OtherSupplies, WastewaterTreatments
LinkType Transmissions, Runoffs, ReturnFlows
FlowType Rivers, Diversions

VariableType Inputs, Outputs
subNodeType Reaches, Reservoirs, RunOfRiverHydros, StreamflowGauges, FlowRequirements

All the URLs contain http://(hostname):(port). In our examples, the hostname is “localhost”, and the port is “8080”.
To test the APIs, the WEAP system and the C-WEAP RESTful framework run first. Then the APIs are called by the
Postman tool. Also, the “Weaping River Basin” project is using as the WEAPWEAP project to test the APIs. The
Schematic view of this project is presented in Figure 16.

The C-WEAP framework always checks the existence of all parameters (e.g., :projectName, :variableName, etc.) in
the URL. For example, the C-WEAP framework first checks the existence of the project “Weaping River Basin”, then
the river “Weaping River”, then the input variable “Headflow”, and finally the scenario “Current Accounts” in the
URL
”http://localhost:8080/Water/Weaping%20River%20Basin/Rivers/Weaping%20River/Inputs/Headflow/Cu
rrent%20Accounts”. The corresponding error message (with status code 404) will return in the case of not existing a
parameter.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water/Weaping%20River%20Basin/Rivers/Weaping%20River/Inputs/Headflow/Current%20Accounts
http://localhost:8080/Water/Weaping%20River%20Basin/Rivers/Weaping%20River/Inputs/Headflow/Current%20Accounts

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 13

Also, for updating APIs, the new values must be set in the body of the request for the URL with PUT methods.

Figure 16. The “Weaping River Basin” project in the WEAP system.

Any application can be used to call the APIs (for example, typing a URL in the address bar of a web browser and
hitting the Enter for the GET type requests), but we use the Postman tool (see https://www.postman.com/). As shown
in Figure 17, the API method, the URL, the parameters, and the body of the request (for PUT requests) can specify in
the Postman (and some other features that we do not use).

Figure 17. The Postman tool environment.

Note: Using an incorrect URL makes “404 Not Found” response (incorrect hostname, port, constant, etc., in the
URL). For example, Figure 18 shows the situation that the URL “http://localhost:8080/Watter” that has a
mistake. It shows the message “Cannot GET /Watter” in the web browser. Indeed, it is requesting an undefined API.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
https://www.postman.com/
http://localhost:8080/Watter

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 14

Figure 18. Calling an incorrect URL (“/Watter”) in the Postman.

Figure 19 presents individual domain model classes defined in the C-WEAP framework for receiving/sending data
from/to the API caller.

Figure 19. Domain Model classes in the C-WEAP framework.

6.1. Project
The C-WEAP APIs related to the Project category are listed in Table 3.

Table 3. List of APIs for the Project module.

Method URL Return
Value/s Description

P1 GET /Water String[] Get the name of all projects
P2 GET /Water/:projectName Project Get properties of a project
P3 GET /Water/:projectName/Run Boolean Run a project

P4 PUT /Water/:projectName Boolean

Update properties of a project,
by setting new values for the
Project object in the body of
the request

Example: As an example, the API P1 from Table 3 is presented here. Figure 20 shows the available projects in the
WEAP system. Calling the URL “http://localhost:8080/Water” in Postman (or web browser) returns the project

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 15

names while the C-WEAP is running (see Figure 21). The list of projects shown in Figure 21 varies depending on the
projects that are available in the WEAP system. It is shown in the Postman that the status of the request is “200 OK”,
the time to get data is “128 ms” (which can be different in different calls), and the size of the response is “361 Byte”.
The time and response time measurements can vary depending on the host computer and other factors.

Figure 20. The projects in the WEAP system.

Figure 21. Calling the URL “/Water” in the Postman.

6.2. Version
The C-WEAP APIs related to the Version category are listed in Table 4. The name of the version is the concatenated
date and the name properties of the Version UML class shown in Figure 19.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 16

Table 4. List of APIs for the Version module.

Method URL Return
Value/s Description

V1 GET /Water/:projectName/Versions Version[] Get the list of all versions
of a project

V2 GET /Water/:projectName/Versions/:versionName Version Get a version of a project

V3 PUT /Water/:projectName/Versions/:versionName/
Revert Boolean Revert to a version for a

project

Example: As an example, the API V1 from Table 4 is presented here. Figure 22 shows the available versions defined
in the “Weaping River Basin” project in the WEAP system. Calling the URL
“http://localhost:8080/Water/Weaping%20River%20Basin/Versions” in Postman (or web browser) returns the
list of versions for the project, ordered by ascending on the date (see Figure 23).

Figure 22. The versions of “Weaping River Basin” project in the WEAP system.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water/Weaping%20River%20Basin/Versions

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 17

Figure 23. Calling the URL “/Water/Weaping%20River%20Basin/Versions” in the Postman.

6.3. Key
The C-WEAP APIs related to the Key category are listed in Table 5.

Table 5. List of APIs for the Key module.

Method URL Return
Value/s Description

K1 GET /Water/:projectName/Keys String[] Get the list of all keys in a
project

K2 GET
/Water/:projectName/Keys/:keyName/:scena
rioName[?&startYear=N&endYear=N&startTim
eStep=N&endTimeStep=N]

Interval
[]

Get a list of all values of a key
in a project

K3 GET /Water/:projectName/Keys/:keyName/:scena
rioName/Expression String Get the expression of a key in

a project

K4 PUT /Water/:projectName/Keys/:keyName/:scena
rioName Boolean

Update the values of a key in a
project, by setting new values
in the body of the request

K5 PUT /Water/:projectName/Keys/:keyName/:scena
rioName/Expression Boolean

Update the expression of a key
in a project, by setting new
value in the body of the
request

Example: As an example, the API K5 from Table 5 is presented here. Figure 24 shows the value of the “Efficiency
Improvements” key defined in the “Weaping River Basin” project for “Reference” scenario in the WEAP system. We
sare going to change the value. So, by calling the URL
“http://localhost:8080/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/
Expression” and set the body of the request to {“value”:”3.5”} in Postman (see Figure 25). This URL will change
the current value of the Efficiency Improvements to 3.5 (see Figure 26), and returns true if the API executes
successfully.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression
http://localhost:8080/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 18

Figure 24. The Efficiency Improvements key in the “Weaping River Basin” project in the WEAP system.

Figure 25. Calling the URL

"/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression " in the
Postman.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 19

Figure 26. The key changing in the “Weaping River Basin” project after using the URL in Figure 25.

6.4. Node
The C-WEAP APIs related to the Node category are listed in Table 6. As mentioned before, one of the values from
Table 2 (Node Type) must be replaced with the NodeType in the URLs shown in Table 6.

Table 6. List of APIs for the Node module.

Method URL Return
Value/s Description

N1 GET /Water/:projectName/NodeType Node[] Get the list of all nodeType
components in a project

N2 GET /Water/:projectName/NodeType/:nodeName Node Get a nodeType component in
a project

N3 GET /Water/:projectName/NodeType/:nodeName/I
nputs Variable[]

Get a list of all input variables
of a nodeType component in a
project

N4 GET /Water/:projectName/NodeType/:nodeName/I
nputs/:variableName Variable

Get an input variable of a
nodeType component in a
project

N5 GET

/Water/:projectName/NodeType/:nodeName/I
nputs/:variableName/:scenarioName[?&star
tYear=N&endYear=N&startTimeStep=N&endTim
eStep=N]

Interval[]
Get a list of all values of an
input variable of a nodeType
component in a project

N6 GET
/Water/:projectName/NodeType/:nodeName/I
nputs/:variableName/:scenarioName/Expres
sion

String
Get the expression of an input
variable of a nodeType
component in a project

N7 PUT /Water/:projectName/NodeType/:nodeName/I
nputs/:variableName/:scenarioName Boolean

Update the values of an input
variable of a nodeType
component in a project, by
setting new values in the body
of the request

N8 PUT

/Water/:projectName/NodeType/:nodeName/I
nputs/:variableName/:scenarioName/Expres
sion

Boolean
Update the expression of an
input variable of a nodeType
component in a project, by

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 20

setting new value in the body
of the request

N9 GET /Water/:projectName/NodeType/:nodeName/O
utputs Variable[]

Get a list of all output
variables of a nodeType
component in a project

N10 GET /Water/:projectName/NodeType/:nodeName/O
utputs/:variableName Variable

Get an output variable of a
nodeType component in a
project

N11 GET

/Water/:projectName/NodeType/:nodeName/O
utputs/:variableName/:scenarioName[?&sta
rtYear=N&endYear=N&startTimeStep=N&endTi
meStep=N]

Interval[]
Get a list of all values of an
output variable of a nodeType
component in a project

Note: The returned values for APIs N5 and N11 can be filtered using query parameters. It means, adding the
“?&startYear=N&endYear=N&startTimeStep=N&endTimeStep=N” at the end of the URL.

Example: As an example, the API N3 from Table 6 for the DemandSite is presented here. Figure 27 shows the input
variables of the “South City” demand site in the “Weaping River Basin” project in the WEAP system. Calling the URL
“http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/South%20City/Inputs” in Postman
(or web browser) returns the list of variables (see Figure 28).

Figure 27. The input variables of the “South City” demand site in the “Weaping River Basin” project in the

WEAP system.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/South%20City/Inputs

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 21

Figure 28. Calling the URL "/Water/Weaping%20River%20Basin/DemandSites/South%20City/

Inputs/Monthly%20Variation/Current%20Accounts?&startYear=2000&endYear=2000" in the Postman.

6.5. Link
The C-WEAP APIs related to the Link category are listed in Table 7. As mentioned before, one of the values from
Table 2 (Link Type) must be replaced with the LinkType in the URLs in Table 7.

Table 7. List of APIs for the Link module.

Method URL Return
Value/s Description

L1 GET /Water/:projectName/LinkType Link[] Get the list of all linkType
components in a project

L2 GET /Water/:projectName/LinkType/:sourceName
/:targetName Link Get a linkType component in a

project

L3 GET /Water/:projectName/LinkType/:sourceName
/:targetName/Inputs Variable[]

Get a list of all input variables
of a linkType component in a
project

L4 GET /Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName Variable

Get an input variable of a
linkType component in a
project

L5 GET

/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName/:scena
rioName[?&startYear=N&endYear=N&startTim
eStep=N&endTimeStep=N]

Interval[]
Get a list of all values of an
input variable of a linkType
component in a project

L6 GET
/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName/:scena
rioName/Expression

String
Get the expression of an input
variable of a linkType
component in a project

L7 PUT
/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName/:scena
rioName

Boolean

Update the values of an input
variable of a linkType
component in a project, by
setting new values in the body
of the request

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 22

L8 PUT
/Water/:projectName/LinkType/:sourceName
/:targetName/Inputs/:variableName/:scena
rioName/Expression

Boolean

Update the expression of an
input variable of a linkType
component in a project, by
setting new value in the body
of the request

L9 GET /Water/:projectName/LinkType/:sourceName
/:targetName/Outputs Variable[]

Get a list of all output
variables of a linkType
component in a project

L10 GET /Water/:projectName/LinkType/:sourceName
/:targetName/Outputs/:variableName Variable

Get an output variable of a
linkType component in a
project

L11 GET

/Water/:projectName/LinkType/:sourceName
/:targetName/Outputs/:variableName/:scen
arioName[?&startYear=N&endYear=N&startTi
meStep=N&endTimeStep=N]

Interval[]
Get a list of all values of an
output variable of a linkType
component in a project

Note: Like Node APIs, filtering can be applied to the link APIs L5 and L11 in Table 7.

Example: As an example, the API L11 from Table 7 for the DemandSite is presented here. Figure 29 shows the
“Water Demand” output variable for the “Reference” scenario of the “Weaping River Basin” project in the WEAP
system. Calling the URL “http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/
South%20City/Outputs/Water%20Demand/Reference?&startYear=2011&endYear=2011” in Postman (or web
browser) returns the list of intervals filtered for the year 2011 (see Figure 30).

Figure 29. The “Water Demand” output variable of the demand sites for the “Reference” scenario of the

“Weaping River Basin” project in the WEAP system.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/%20South%20City/Outputs/Water%20Demand/Reference?&startYear=2011&endYear=2011
http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/%20South%20City/Outputs/Water%20Demand/Reference?&startYear=2011&endYear=2011

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 23

Figure 30. Calling the URL "/Water/Weaping%20River%20Basin/DemandSites/South%20City/

Outputs/Water%20Demand/Reference?&startYear=2002&endYear=2002" in the Postman.

6.6. Flow
The C-WEAP APIs related to the Flow category are listed in Table 8. As mentioned before, one of the values from
Table 2 (Flow Type) must be replaced with the FlowType in the URLs in Table 8.

Table 8. List of APIs for the Flow module.

Method URL Return
Value/s Description

F1 GET /Water/:projectName/FlowType Node[] Get the list of all flowType
components in a project

F2 GET /Water/:projectName/FlowType/:flowName Node Get a flowType component in
a project

F3 GET /Water/:projectName/FlowType/:flowName/I
nputs Variable[]

Get a list of all input variables
of a flowType component in a
project

F4 GET /Water/:projectName/FlowType/:flowName/I
nputs/:variableName Variable

Get an input variable of a
flowType component in a
project

F5 GET

/Water/:projectName/FlowType/:flowName/I
nputs/:variableName/:scenarioName[?&star
tYear=N&endYear=N&startTimeStep=N&endTim
eStep=N]

Interval[]
Get a list of all values of an
input variable of a flowType
component in a project

F6 GET
/Water/:projectName/FlowType/:flowName/I
nputs/:variableName/:scenarioName/Expres
sion

String
Get the expression of an input
variable of a flowType
component in a project

F7 PUT /Water/:projectName/FlowType/:flowName/I
nputs/:variableName/:scenarioName Boolean

Update the values of an input
variable of a flowType
component in a project, by
setting new values in the body
of the request

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 24

F8 PUT
/Water/:projectName/FlowType/:flowName/I
nputs/:variableName/:scenarioName/Expres
sion

Boolean

Update the expression of an
input variable of a flowType
component in a project, by
setting new value in the body
of the request

F9 GET /Water/:projectName/FlowType/:flowName/O
utputs Variable[]

Get a list of all output
variables of a flowType
component in a project

F10 GET /Water/:projectName/FlowType/:flowName/O
utputs/:variableName Variable

Get an output variable of a
flowType component in a
project

F11 GET

/Water/:projectName/FlowType/:flowName/O
utputs/:variableName/:scenarioName[?&sta
rtYear=N&endYear=N&startTimeStep=N&endTi
meStep=N]

Interval[]
Get a list of all values of an
output variable of a flowType
component in a project

F12 GET /Water/:projectName/FlowType/:flowName/s
unNodeType Node[]

Get the list of all subNodeType
components in a flowType
components in a project

F13 GET /Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName Node

Get a subNodeType
component of a flowType
component in a project

F14 GET /Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs Variable[]

Get a list of all input variables
of a subNodeType component
of a flowType component in a
project

F15 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name

Variable

Get an input variable of a
subNodeType component of a
flowType component in a
project

F16 GET

/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name/:scenarioName[?&startYear=N&endYear
=N&startTimeStep=N&endTimeStep=N]

Interval[]

Get a list of all values of an
input variable of a
subNodeType component of a
flowType component in a
project

F17 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name/:scenarioName/Expression

String

Get the expression of an input
variable of a subNodeType
component of a flowType
component in a project

F18 PUT
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name/:scenarioName

Boolean

Update the values of an input
variable of a subNodeType
component of a flowType
component in a project, by
setting new values in the body
of the request

F19 PUT
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Inputs/:variable
Name/:scenarioName/Expression

Boolean

Update the expression of an
input variable of a
subNodeType component of a
flowType component in a
project, by setting new value in
the body of the request

F20 GET /Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Outputs Variable[]

Get a list of all output
variables of a subNodeType
component of a flowType
component in a project

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 25

F21 GET
/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Outputs/:variabl
eName

Variable

Get an output variable of a
subNodeType component of a
flowType component in a
project

F22 GET

/Water/:projectName/FlowType/:flowName/s
unNodeType/:subNodeName/Outputs/:variabl
eName/:scenarioName[?&startYear=N&endYea
r=N&startTimeStep=N&endTimeStep=N]

Interval[]

Get a list of all values of an
output variable of a
subNodeType component of a
flowType component in a
project

Note: Like Node and Link APIs, filtering can be applied on the Flow APIs F5, F11, F16, and F22 in Table 8.

Example: As an example, the API F12 fromTable 8 the Rivers FlowType and the Reservoirs for the subNodeType are
presented here. Figure 16 shows the Schematic view for the “Weaping River Basin” project in the WEAP system. As
can be seen, there are two reservoirs on the “Weaping River” river. Calling the URL
“http://localhost:8080/Water/Weaping%20River%20Basin/Rivers/Weaping%20River/Reservoirs” in
Postman (or web browser) returns the list of nodes (shown in Figure 31).

Figure 31. Calling the URL “/Water/Weaping%20River%20Basin/Rivers/Weaping%20River/Reservoirs” in

the Postman.

6.7. A simple example
The following is an example illustrating using the C-WEAP framework for making changes to the “Weaping River
Basin“ model’s configuration, reaching an optimal solution.

Problem: Given the default “Weaping River Basin“ project, what is the optimal value for the “Efficiency
Improvements“ key value to have the “Water Demand“ result for the “West City“ demand site in the year 2020 between
495,000,000 m3 and 505,000,000 m3 (500,000,000 ± 1%).

6.7.1. Model configuration
Based on the WEAP calculation, the “Water Demand” result for a demand site uses the “Annual Activity Level” and
“Annual Water Use Rate” input values. In the “Reference” scenario of the project, the “Annual Water Use Rate” is
using the “Technical Innovation” key, and the “Technical Innovation“ key is using the “Efficiency Improvements“ key

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water/Weaping%20River%20Basin/Rivers/Weaping%20River/Reservoirs

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 26

to define the input data (the default value for the “Efficiency Improvements” key is 2). Using these value, the “Water
Demand” is calculated by changing the “Efficiency Improvements” value.

6.7.2. Simulation Execution
The basic algorithm presented in Figure 32 to find the optimal “Efficiency Improvements” for the defined problem
based on using different APIs from the C-WEAP framework. In step 1, the water demand is to be determined (calculate
the optimal range for the “Water Demand”) for the water demand ranging from 495,000,000 (WDlower_bound) to
505,000,000 (named WDupper_bound) values. In step 2, the default key “Efficiency Improvements” value is read from the
WEAP system by calling the K3 API from the C-WEAP (http://localhost:8080/Water/Weaping%20
River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression). In step 3, the WEAP is executed
(i.e., simulated) using the P3 (http://localhost:8080/Water/Weaping%20River%20Basin/Run). In step 4, the
“Water Demand” result values for the demand site “West City” and scenario “Reference” for year 2020 are read using
the N11 API from the C-WEAP (http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/
West%20City/Outputs/Water%20Demand/Reference?StartYear=2020&endYear=2020). Also, in this step, the sum
of the water demand for year 2020 must be calculated (called WD2020), because the return type of calling N11 is an
array of the Intervals for all time-steps values.

Figure 32. The flowchart to solve the defined problem in section 6.7 to find optimal efficiency.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water/Weaping%20%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression
http://localhost:8080/Water/Weaping%20%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression
http://localhost:8080/Water/Weaping%20River%20Basin/Run
http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/%20West%20City/Outputs/Water%20Demand/Reference?StartYear=2020&endYear=2020
http://localhost:8080/Water/Weaping%20River%20Basin/DemandSites/%20West%20City/Outputs/Water%20Demand/Reference?StartYear=2020&endYear=2020

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 27

In step 5, the WD2020 is checked to be in the optimal water demand range (between WDlower_bound and WDupper_bound). If
the WD2020 is in the optimal range, the current “Efficiency Improvements” value is returned as a result, in step 6.
Otherwise, the “Efficiency Improvements” key value must be checked to be decreased/increased using a simple
evaluation of the WD2020 value to be smaller/larger than the WDlower_bound/WDupper_bound value in step 7. In steps 8/steps
9, the decrease/increase amounts for the “Efficiency Improvements” are calculated. In step 10, the new value for the
“Efficiency Improvements” updates using the K5 API from the C-WEAP
(http://localhost:8080/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/
Expression) and then the algorithm returns to step 3. The algorithm is expected to terminate with an optimal value
for the “Efficiency Improvements”.

In this simulation execution, a value 𝑘𝑘 for changing the “Efficiency Improvements” (if the current DW2020 value is out
of the acceptance range) is set initially. Then, the 𝑘𝑘 value is divided by 2 if DW2020 value is outside the acceptance
range defined for the “Water Demand”. For example, suppose the current DW2020 is larger than WDupper_bound, then the
value of the “Efficiency Improvements” will increase by 𝑥𝑥, and the WEAP system is executed. Now, suppose the
DW2020 is smaller than WDlower_bound, so the value of “Efficiency Improvements” will decrease by 𝑥𝑥

2
 and the WEAP

system is executed.

6.7.3. Model Implementation
A Java maven application is used to implement the illustrated algorithm in Figure 32. Also, the Jersey framework is
used to define the RESTful API for the Java application. The full implementation is presented in Appendix B. In the
source code, lines 1 to 84 are the implementation for the algorithm in Figure 32. Lines 85 to 207 are the RESTful API
(using Jersey framework) for the Project, Key, and Node categories. Finally, lines 208 to 312 are the classes to define
the required domain models.

6.7.4. Simulation Results
A set of suitable values should be selected for 𝑘𝑘, the amounts by which is to be changed as long as the water demand
is outside of the desired range. Three changing steps equal to 0.4, 1, and 2 are selected. The results and the trends of
water demand to reach the desired ranges for three configurations are shown in Figure 33. The “Efficiency
Improvements” is initialized to 2, and the WD2020 is 595,415,306.79 m3. In Figure 33(a) the “Efficiency Improvements”
increases by 0.4 through the sixth simulation cycle for the WD2020 to smaller than WDlower_bound. For the seventh
simulation cycle, the “Efficiency Improvements” decreases by 0.2. The result is the WD2020 falls within the acceptance
range (499,859,761.56 m3), with the final efficiency improvement equal to 3.8. Different results are shown in Figure
33(b) and (c) for changing steps 1 and 2, respectively. For both settings, the optimal efficiency improvement is 3.75.
The desired range for the “Water Demand” values (495,000,000 to 505,000,000) is shown in the green areas in Figure
33(b) and (c).

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/
http://localhost:8080/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression
http://localhost:8080/Water/Weaping%20River%20Basin/Keys/Efficiency%20Improvements/Reference/Expression

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 28

(a)

(b)

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 29

(c)

Figure 33. The result of running simulation with different changing step values (a) changing step equals 0.4 unit,
(b) changing step equals 1 unit, (c) changing step equals 2 unit.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 30

7. References

[1] ACIMS, "Componentized-WEAP RESTful Framework," 20 June 2020. [Online]. Available:
https://acims.asu.edu/software/c-weap. [Accessed 20 June 2020].

[2] M. D. Fard and H. S. Sarjoughian, "A Web-service Framework for the Water Evaluation and Planning System,"
Spring Simulation Conference (SpringSim), pp. 1-12, 2019.

[3] M. D. Fard and H. S. Sarjoughian, "Coupling WEAP and LEAP Models using Interaction Modeling," in
SpringSim Conference, Fairfax, VA, USA, 2020.

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 31

Appendix A
The WEAP APIs used in developing the Componentized-WEAP framework

API Return Object Category
1 WEAP.ActiveArea Area

WEAP

2 WEAP.ActiveArea.Name String

3 WEAP.WaterYearStart Integer

4 WEAP.ActiveScenario Scenario

5 WEAP.BaseYear Integer

6 WEAP.EndYear Integer

7 WEAP.TimeStepName(Id) String

8 WEAP.NumTimeSteps Integer

9 WEAP.View String

10 WEAP.Calculate(LastYear, LastTimestep, AlwaysCalculate) -

11
WEAP.ResultValue(BranchName:VariableName, Year, TimeStep,
ScenarioName) Double

12 WEAP.Areas(Id) Area[]
Area

13 WEAP.Areas.Count Integer

14 WEAP.Versions.Count Integer

Version

15 WEAP.Versions(Name/Id) Version

16 WEAP.Versions.Exist(VersionName) Boolean

17 WEAP.SaveVersion(VersionName) -

18 WEAP.Versions(VersionName).Revert() -

19 WEAP.Scenarios(Id) Scenario[]

Scenario
20 WEAP.Scenarios.Exists(ScenarioName) Boolean

21 WEAP.Scenarios.Add(ScenarioName) -

22 WEAP.Scenarios(ScenarioName).Delete() -

23 WEAP.Branch(BranchName) Branch

Branch

24 WEAP.BranchExists(BranchName) Boolean

25 WEAP.Branch(BranchName).Children Branch[]

26 WEAP.Branch(BranchName).Variables Variable[]

27 WEAP.Branch(BranchName).Variables.Exists(VariableName) Boolean

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 32

Appendix B

public class App 1
{ 2
 public static void main(String[] args) { 3
 OEIC oeic= new OEIC("Weaping River Basin", 500000000, 5000000, 2); 4
 oeic.calculate(); 5
 } 6
} 7

// OEIC stands for Optimal Efficiency Improvement Calculator 8
public class OEIC { 9
 private String _projectName = null; 10
 private double _changeEfficiencyValue = 0; 11
 12
 private double _startWD = 0; 13
 private double _endWD = 0; 14
 15

public OEIC(String projectName, double optimalEfficiency, double efficiencyThreshold, double changeEff16
iciencyValue) { 17

 this._projectName = projectName; 18
 this._changeEfficiencyValue = changeEfficiencyValue; 19
 20
 this._startWD = optimalEfficiency - efficiencyThreshold; 21
 this._endWD = optimalEfficiency + efficiencyThreshold; 22
 } 23
 24
 public double calculate() { 25
 WaterService waterService = new WaterService(); 26
 waterService.run(this._projectName); 27
 28
 KeyService keyService = new KeyService(this._projectName); 29
 NodeService nodeService = new NodeService(this._projectName,ComponentTypes.DemandSite); 30
 31

double efficiencyValue = Double.valueOf(keyService.getExpression("Efficiency Improvements", "Refer32
ence")); 33
Interval[] waterDemandValues = nodeService.getOutputValues("West City", "Water Demand", "Reference34
", new FilterParams(2020, 2020)); 35

 double sum2020 = this.getSum(waterDemandValues); 36
 37
 double changeEfficiency = this._changeEfficiencyValue; 38
 boolean isBigger = false; 39
 if (sum2020 > this._endWD) 40
 isBigger = true; 41
 42
 while ((sum2020 < this._startWD) || (sum2020 > this._endWD)) { 43

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 33

 if (sum2020 < this._startWD) { 44
 if (isBigger) { 45
 changeEfficiency /= 2; 46
 isBigger = false; 47
 } 48
 49
 efficiencyValue -= changeEfficiency; 50
 } 51
 else { 52
 if (!isBigger) { 53
 changeEfficiency /= 2; 54
 isBigger = true; 55
 } 56
 57
 efficiencyValue += changeEfficiency; 58
 } 59
 60
 keyService.setExpression("Efficiency Improvements", "Reference", String.valueOf(efficiencyValu61

e)); 62
 63
 waterService.run(this._projectName); 64
 65

waterDemandValues = nodeService.getOutputValues("West City", "Water Demand", "Reference", new 66
FilterParams(2020, 2020)); 67

 sum2020 = this.getSum(waterDemandValues); 68
 } 69
 70
 return efficiencyValue; 71
 } 72
 73
 private double getSum(Interval[] values) { 74
 double result = 0; 75
 for (Interval interval : values) { 76
 for (Data data : interval.getData()) { 77
 result += data.getValue(); 78
 } 79
 } 80
 return result; 81
 } 82
} 83

public abstract class AbstractWebService { 84
 private static final String SYSTEM = "Water"; 85
 private String projectName = ""; 86
 private ComponentTypes componentType = null; 87
 88

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 34

 public AbstractWebService() { 89
 } 90
 91
 public AbstractWebService(String projectName, ComponentTypes componentType) { 92
 this.projectName = projectName.replaceAll("\\s", "%20"); 93
 this.componentType = componentType; 94
 } 95
 96
 private URI getBaseUrl() { 97
 UriBuilder uri = UriBuilder.fromUri("http://localhost:8080/" + SYSTEM); 98
 if (this.componentType != null) 99
 uri.path(this.projectName).path(this.componentType.getTitle()); 100
 return uri.build(); 101
 } 102
 103
 protected <T> T Get(Class<T> type) { 104
 return this.Get(type, "", null); 105
 } 106
 107
 protected <T> T Get(Class<T> type, String path) { 108
 return this.Get(type, path, null); 109
 } 110
 111
 protected <T> T Get(Class<T> type, String path, FilterParams filters) { 112
 path = path.replaceAll("\\s", "%20"); 113
 if (filters != null) { 114
 path += this.getQueryParameters(filters); 115
 } 116
 String url = this.getBaseUrl() + path; 117
 Builder builder = ClientBuilder.newClient().target(url).request(MediaType.APPLICATION_JSON); 118
 Response res = builder.get(); 119
 120
 return res.readEntity(type); 121
 } 122
 123
 protected boolean Put(String path, Object values) { 124
 String url = this.getBaseUrl() + path.replaceAll("\\s", "%20"); 125
 Builder builder = ClientBuilder.newClient().target(url).request(MediaType.APPLICATION_JSON); 126
 Response res = builder.put(Entity.entity(values, MediaType.APPLICATION_JSON), Response.class); 127
 128
 return res.readEntity(boolean.class); 129
 } 130
 131
 private String getQueryParameters(FilterParams filters) { 132
 String start = "?"; 133

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 35

 String result = start; 134
 135
 if (filters.getStartYear() != 0) { 136
 if (result == start) 137
 result += "startYear=" + filters.getStartYear(); 138
 else 139
 result += "&startYear=" + filters.getStartYear(); 140
 } 141
 142
 if (filters.getEndYear() != 0) { 143
 if (result == start) 144
 result += "endYear=" + filters.getEndYear(); 145
 else 146
 result += "&endYear=" + filters.getEndYear(); 147
 } 148
 149
 if (filters.getStartTimeStep() != 0) { 150
 if (result == start) 151
 result += "startTimeStep=" + filters.getStartTimeStep(); 152
 else 153
 result += "&startTimeStep=" + filters.getStartTimeStep(); 154
 } 155
 156
 if (filters.getEndTimeStep() != 0) { 157
 if (result == start) 158
 result += "endTimeStep=" + filters.getEndTimeStep(); 159
 else 160
 result += "&endTimeStep=" + filters.getEndTimeStep(); 161
 } 162
 163
 return result; 164
 } 165
} 166

public class WaterService extends AbstractWebService { 167
 public WaterService() { 168
 super(); 169
 } 170
 171
 public boolean run(String projectName) { 172
 String path = "/" + projectName + "/Run"; 173
 return (boolean) super.Get(boolean.class, path); 174
 } 175
} 176

public class KeyService extends AbstractWebService { 177
 public KeyService(String projectName) { 178

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 36

 super(projectName, ComponentTypes.Key); 179
 } 180
 181
 public String getExpression(String compName, String scenarioName) { 182
 String path = "/" + compName + "/" + scenarioName + "/Expression"; 183
 String temp = super.Get(String.class, path); 184
 return (String) temp.substring(1, temp.length() - 1); 185
 } 186
 187
 public boolean setExpression(String compName, String scenarioName, String expression) { 188
 String path = "/" + compName + "/" + scenarioName + "/Expression"; 189
 return super.Put(path, new ExpressionValue(expression)); 190
 } 191
} 192

public class NodeService extends AbstractWebService { 193
 public NodeService(String projectName, ComponentTypes componentType) { 194
 super(projectName, componentType); 195
 } 196
 197

public Interval[] getOutputValues(String compName, String portName, String scenarioName, FilterParams 198
filters) { 199

 String path = "/" + compName + "/Outputs/" + portName + "/" + scenarioName; 200
 return (Interval[]) super.Get(Interval[].class, path, filters); 201
 } 202
} 203

public class Interval { 204
 private int year; 205
 private List<Data> data; 206
 207
 public Interval() { 208
 this.data = new ArrayList<>(); 209
 } 210
 211
 public int getYear() { 212
 return year; 213
 } 214
 215
 public void setYear(int year) { 216
 this.year = year; 217
 } 218
 219
 public List<Data> getData() { 220
 return data; 221
 } 222
 223

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 37

 public void addData(Data data) { 224
 this.data.add(data); 225
 } 226
 227
 public void addData(List<Data> data) { 228
 this.data.addAll(data); 229
 } 230
} 231

public class Data { 232
 private int timeStep; 233
 private double value; 234
 235
 public Data() { 236
 } 237
 238
 public Data(int timeStep, double value) { 239
 this.timeStep = timeStep; 240
 this.value = value; 241
 } 242
 243
 public int getTimeStep() { 244
 return timeStep; 245
 } 246
 247
 public double getValue() { 248
 return value; 249
 } 250
 251
 public void setValue(double value) { 252
 this.value = value; 253
 } 254
 255
 public void setTimeStep(int timeStep) { 256
 this.timeStep = timeStep; 257
 } 258
} 259

public class FilterParams { 260
 private int startYear; 261
 private int endYear; 262
 private int startTimeStep; 263
 private int endTimeStep; 264
 265
 public FilterParams(int startYear, int endYear) { 266
 this(startYear, endYear, 0, 0); 267
 } 268

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

Componentized-WEAP (C-WEAP) RESTful Framework

ACIMS Version 1.1 38

 269
 public FilterParams(int startYear, int endYear, int startTimeStep, int endTimeStep) { 270
 this.setStartYear(startYear); 271
 this.setEndYear(endYear); 272
 this.setStartTimeStep(startTimeStep); 273
 this.setEndTimeStep(endTimeStep); 274
 } 275
 276
 public int getStartYear() { 277
 return startYear; 278
 } 279
 280
 public void setStartYear(int startYear) { 281
 this.startYear = startYear; 282
 } 283
 284
 public int getEndYear() { 285
 return endYear; 286
 } 287
 288
 public void setEndYear(int endYear) { 289
 this.endYear = endYear; 290
 } 291
 292
 public int getStartTimeStep() { 293
 return startTimeStep; 294
 } 295
 296
 public void setStartTimeStep(int startTimeStep) { 297
 this.startTimeStep = startTimeStep; 298
 } 299
 300
 public int getEndTimeStep() { 301
 return endTimeStep; 302
 } 303
 304
 public void setEndTimeStep(int endTimeStep) { 305
 this.endTimeStep = endTimeStep; 306
 } 307
}308

https://acims.asu.edu/software/C-WEAP/
https://acims.asu.edu/

	1. Componentized-WEAP Software Application
	2. WEAP Software System
	3. Executable Componentized-WEAP Software Application Installation
	4. Componentized-WEAP Source Code Installation
	4.1. NodeJS
	4.2. Python
	4.3. TypeScript
	4.4. Git
	4.5. VS-Code
	4.6. Download Source Code
	4.7. Update the C-WEAP Packages
	4.8. Running the C-WEAP RESTful Framework

	5. Define the C-WEAP Model Configuration
	6. Modules
	6.1. Project
	6.2. Version
	6.3. Key
	6.4. Node
	6.5. Link
	6.6. Flow
	6.7. A simple example
	6.7.1. Model configuration
	6.7.2. Simulation Execution
	6.7.3. Model Implementation
	6.7.4. Simulation Results

	7. References

